
Package: poppr (via r-universe)
August 14, 2024

Type Package

Title Genetic Analysis of Populations with Mixed Reproduction

Version 2.9.6

Maintainer Zhian N. Kamvar <zkamvar@gmail.com>

Encoding UTF-8

URL https://grunwaldlab.github.io/poppr/,

https://github.com/grunwaldlab/poppr/,

https://grunwaldlab.github.io/Population_Genetics_in_R/

Description Population genetic analyses for hierarchical analysis of
partially clonal populations built upon the architecture of the
'adegenet' package. Originally described in Kamvar, Tabima, and
Grünwald (2014) <doi:10.7717/peerj.281> with version 2.0
described in Kamvar, Brooks, and Grünwald (2015)
<doi:10.3389/fgene.2015.00208>.

MailingList https://groups.google.com/d/forum/poppr

BugReports https://github.com/grunwaldlab/poppr/issues/

Depends R (>= 2.15.1), adegenet (>= 2.0.0)

Imports stats, graphics, grDevices, utils, vegan, ggplot2, ape (>=
3.1-1), igraph (>= 1.0.0), methods, ade4, pegas, polysat, dplyr
(>= 0.4), rlang, boot, shiny, magrittr, progressr

Suggests testthat, knitr, rmarkdown, poweRlaw, cowplot

Config/Needs/check dbailleul/RClone

License GPL-2 | GPL-3

VignetteBuilder knitr

RoxygenNote 7.2.3

Repository https://grunwaldlab.r-universe.dev

RemoteUrl https://github.com/grunwaldlab/poppr

RemoteRef HEAD

RemoteSha aa90f4f4e2ee77eb3704949ec2d435f497cc2fd3

1

https://grunwaldlab.github.io/poppr/
https://github.com/grunwaldlab/poppr/
https://grunwaldlab.github.io/Population_Genetics_in_R/
https://doi.org/10.7717/peerj.281
https://doi.org/10.3389/fgene.2015.00208
https://github.com/grunwaldlab/poppr/issues/

2 Contents

Contents
poppr-package . 3
aboot . 8
Aeut . 11
as.snpclone . 12
bitwise.dist . 13
boot.ia . 15
bootgen2genind . 16
bruvo.boot . 18
bruvo.dist . 20
bruvo.msn . 24
clonecorrect . 28
cutoff_predictor . 30
diss.dist . 31
diversity_boot . 32
diversity_ci . 34
diversity_stats . 37
filter_stats . 39
fix_replen . 41
genclone-class . 43
genind2genalex . 44
genotype_curve . 46
getfile . 48
greycurve . 49
ia . 50
imsn . 55
incomp . 57
informloci . 58
info_table . 60
is.snpclone . 61
locus_table . 62
make_haplotypes . 64
missingno . 65
mlg . 67
mlg.filter . 71
mll . 75
mll.custom . 76
mll.reset . 77
monpop . 79
nei.dist . 80
old2new_genclone . 82
partial_clone . 82
pgen . 83
Pinf . 85
plot_poppr_msn . 85
poppr . 90
poppr.all . 95

poppr-package 3

poppr.amova . 96
poppr.msn . 101
poppr_has_parallel . 104
popsub . 105
Pram . 106
private_alleles . 107
psex . 109
rare_allele_correction . 113
read.genalex . 115
recode_polyploids . 117
rraf . 119
rrmlg . 121
samp.ia . 123
shufflepop . 124
test_replen . 126
upgma . 127
win.ia . 128

Index 131

poppr-package The poppr R package

Description

Poppr provides tools for population genetic analysis that include genotypic diversity measures,
genetic distances with bootstrap support, native organization and handling of population hierarchies,
and clone correction.

To cite poppr, please use citation("poppr"). When referring to poppr in your manuscript,
please use lower case unless it occurs at the beginning of a sentence.

Details

This package relies on the adegenet package. It is built around the genind and genlight object.
Genind objects store genetic information in a table of allele frequencies while genlight objects
store SNP data efficiently by packing binary allele calls into single bits. Poppr has extended these
object into new objects called genclone and snpclone, respectively. These objects are designed for
analysis of clonal organisms as they add the @mlg slot for keeping track of multilocus genotypes
and multilocus lineages.

Documentation: Documentation is available for any function by typing ?function_name in the
R console. Detailed topic explanations live in the package vignettes:

Vignette command
Data import and manipulation vignette("poppr_manual", "poppr")
Algorithms and Equations vignette("algo", "poppr")
Multilocus Genotype Analysis vignette("mlg", "poppr")

4 poppr-package

Essential functions for importing and manipulating data are detailed within the Data import and
manipulation vignette, details on algorithms used in poppr are within the Algorithms and equa-
tions vignette, and details for working with multilocus genotypes are in Multilocus Genotype
Analysis.
Examples of analyses are available in a primer written by Niklaus J. Grünwald, Zhian N. Kamvar,
and Sydney E. Everhart at https://grunwaldlab.github.io/Population_Genetics_in_R/.

Getting help: If you have a specific question or issue with poppr, feel free to contribute to
the google group at https://groups.google.com/d/forum/poppr. If you find a bug and are a
github user, you can submit bug reports at https://github.com/grunwaldlab/poppr/issues.
Otherwise, leave a message on the groups. Personal emails are highly discouraged as they do not
allow others to learn.

Functions in poppr

Below are descriptions and links to functions found in poppr. Be aware that all functions in ade-
genet are also available. The functions are documented as:

• function_name() (data type) - Description

Where ‘data type’ refers to the type of data that can be used:

m a genclone or genind object
s a snpclone or genlight object
x a different data type (e.g. a matrix from mlg.table())

Data import/export

• getfile() (x) - Provides a quick GUI to grab files for import
• read.genalex() (x) - Reads GenAlEx formatted csv files to a genind object
• genind2genalex() (m) - Converts genind objects to GenAlEx formatted csv files
• genclone2genind() (m) - Removes the @mlg slot from genclone objects
• as.genambig() (m) - Converts genind data to polysat’s genambig data structure.
• bootgen2genind() (x) - see aboot() for details)

Data Structures

Data structures "genclone" (based off of adegenet’s genind) and "snpclone" (based off of adegenet’s
genlight for large SNP data sets). Both of these data structures are defined by the presence of an
extra MLG slot representing multilocus genotype assignments, which can be a numeric vector or a
MLG class object.

• genclone - Handles microsatellite, presence/absence, and small SNP data sets
• snpclone - Designed to handle larger binary SNP data sets.
• MLG - An internal class holding a data frame of multilocus genotype assignments that acts

like a vector, allowing the user to easily switch between different MLG definitions.
• bootgen - An internal class used explicitly for aboot() that inherits the gen-class virtual ob-

ject. It is designed to allow for sampling loci with replacement.
• bruvomat - An internal class designed to handle bootstrapping for Bruvo’s distance where

blocks of integer loci can be shuffled.

https://grunwaldlab.github.io/Population_Genetics_in_R/
https://groups.google.com/d/forum/poppr
https://github.com/grunwaldlab/poppr/issues

poppr-package 5

Data manipulation

• as.genclone() (m) - Converts genind objects to genclone objects

• missingno() (m) - Handles missing data

• clonecorrect() (m | s) - Clone-censors at a specified population hierarchy

• informloci() (m) - Detects and removes phylogenetically uninformative loci

• popsub() (m | s) - Subsets genind objects by population

• shufflepop() (m) - Shuffles genotypes at each locus using four different shuffling algorithms

• recode_polyploids() (m | x) - Recodes polyploid data sets with missing alleles imported as
"0"

• make_haplotypes() (m | s) - Splits data into pseudo-haplotypes. This is mainly used in
AMOVA.

• test_replen() (m) - Tests for inconsistent repeat lengths in microsatellite data. For use in
bruvo.dist() functions.

• fix_replen() (m) - Fixes inconsistent repeat lengths. For use in bruvo.dist() functions.

Genetic distances

• bruvo.dist() (m) - Bruvo’s distance (see also: fix_replen())

• diss.dist() (m) - Absolute genetic distance (see prevosti.dist())

• nei.dist() (m | x) - Nei’s 1978 genetic distance

• rogers.dist() (m | x) - Rogers’ euclidean distance

• reynolds.dist() (m | x) - Reynolds’ coancestry distance

• edwards.dist() (m | x) - Edwards’ angular distance

• prevosti.dist() (m | x) - Prevosti’s absolute genetic distance

• bitwise.dist() (s) - Calculates fast pairwise distances for genlight objects.

Bootstrapping

• aboot() (m | s | x) - Creates a bootstrapped dendrogram for any distance measure

• bruvo.boot() (m) - Produces dendrograms with bootstrap support based on Bruvo’s distance

• diversity_boot() (x) - Generates boostrap distributions of diversity statistics for multilocus
genotypes

• diversity_ci() (m | s | x) - Generates confidence intervals for multilocus genotype diversity.

• resample.ia() (m) - Calculates the index of association over subsets of data.

Multilocus Genotypes

• mlg() (m | s) - Calculates the number of multilocus genotypes

• mll() (m | s) - Displays the current multilocus lineages (genotypes) defined.

• nmll() (m | s) - Same as mlg().

• mlg.crosspop() (m | s) - Finds all multilocus genotypes that cross populations

6 poppr-package

• mlg.table() (m | s) - Returns a table of populations by multilocus genotypes

• mlg.vector() (m | s) - Returns a vector of a numeric multilocus genotype assignment for
each individual

• mlg.id() (m | s) - Finds all individuals associated with a single multilocus genotype

• mlg.filter() (m | s) - Collapses MLGs by genetic distance

• filter_stats() (m | s) - Calculates mlg.filter for all algorithms and plots

• cutoff_predictor() (x) - Predicts cutoff threshold from mlg.filter.

• mll.custom() (m | s) - Allows for the custom definition of multilocus lineages

• mll.levels() (m | s) - Allows the user to change levels of custom MLLs.

• mll.reset() (m | s) - Reset multilocus lineages.

• diversity_stats() (x) - Creates a table of diversity indices for multilocus genotypes.

Index of Association Analysis

Analysis of multilocus linkage disequilibrium.

• ia() (m) - Calculates the index of association

• pair.ia() (m) - Calculates the index of association for all loci pairs.

• win.ia() (s) - Index of association windows for genlight objects.

• samp.ia() (s) - Index of association on random subsets of loci for genlight objects.

Population Genetic Analysis

• poppr.amova() (m | s) - Analysis of Molecular Variance (as implemented in ade4)

• poppr() (m | x) - Returns a diversity table by population

• poppr.all() (m | x) - Returns a diversity table by population for all compatible files specified

• private_alleles() (m) - Tabulates the occurrences of alleles that only occur in one popula-
tion.

• locus_table() (m) - Creates a table of summary statistics per locus.

• rrmlg() (m | x) - Round-robin multilocus genotype estimates.

• rraf() (m) - Round-robin allele frequency estimates.

• pgen() (m) - Probability of genotypes.

• psex() (m) - Probability of observing a genotype more than once.

• rare_allele_correction (m) - rules for correcting rare alleles for round-robin estimates.

• incomp() (m) - Check data for incomparable samples.

Visualization

• imsn() (m | s) - Interactive construction and visualization of minimum spanning networks

• plot_poppr_msn() (m | s | x) - Plots minimum spanning networks produced in poppr with
scale bar and legend

poppr-package 7

• greycurve() (x) - Helper to determine the appropriate parameters for adjusting the grey level
for msn functions

• bruvo.msn() (m) - Produces minimum spanning networks based off Bruvo’s distance colored
by population

• poppr.msn() (m | s | x) - Produces a minimum spanning network for any pairwise distance
matrix related to the data

• info_table() (m) - Creates a heatmap representing missing data or observed ploidy

• genotype_curve() (m | x) - Creates a series of boxplots to demonstrate how many markers
are needed to represent the diversity of your data.

Datasets

• Aeut() - (AFLP) Oomycete root rot pathogen Aphanomyces euteiches (Grünwald and Ho-
heisel, 2006)

• monpop() - (SSR) Peach brown rot pathogen Monilinia fructicola (Everhart and Scherm,
2015)

• partial_clone() - (SSR) partially-clonal data simulated via simuPOP (Peng and Amos,
2008)

• Pinf() - (SSR) Potato late blight pathogen Phytophthora infestans (Goss et. al., 2014)

• Pram() - (SSR) Sudden Oak Death pathogen Phytophthora ramorum (Kamvar et. al., 2015;
Goss et. al., 2009)

Author(s)

Zhian N. Kamvar, Jonah C. Brooks, Sydney E. Everhart, Javier F. Tabima, Stacy Krueger-Hadfield,
Erik Sotka, Niklaus J. Grünwald

Maintainer: Zhian N. Kamvar

References

——— Papers announcing poppr ———

Kamvar ZN, Tabima JF, Grünwald NJ. (2014) Poppr: an R package for genetic analysis of popula-
tions with clonal, partially clonal, and/or sexual reproduction. PeerJ 2:e281 doi:10.7717/peerj.281

Kamvar ZN, Brooks JC and Grünwald NJ (2015) Novel R tools for analysis of genome-wide popu-
lation genetic data with emphasis on clonality. Front. Genet. 6:208. doi:10.3389/fgene.2015.00208

——— Papers referencing data sets ———

Grünwald, NJ and Hoheisel, G.A. 2006. Hierarchical Analysis of Diversity, Selfing, and Genetic
Differentiation in Populations of the Oomycete Aphanomyces euteiches. Phytopathology 96:1134-
1141 doi: doi:10.1094/PHYTO961134

SE Everhart, H Scherm, (2015) Fine-scale genetic structure of Monilinia fructicola during brown rot
epidemics within individual peach tree canopies. Phytopathology 105:542-549 doi: doi:10.1094/
PHYTO03140088R

Bo Peng and Christopher Amos (2008) Forward-time simulations of nonrandom mating populations
using simuPOP. bioinformatics, 24 (11): 1408-1409.

https://doi.org/10.7717/peerj.281
https://doi.org/10.3389/fgene.2015.00208
https://doi.org/10.1094/PHYTO-96-1134
https://doi.org/10.1094/PHYTO-03-14-0088-R
https://doi.org/10.1094/PHYTO-03-14-0088-R

8 aboot

Goss, Erica M., Javier F. Tabima, David EL Cooke, Silvia Restrepo, William E. Fry, Gregory A.
Forbes, Valerie J. Fieland, Martha Cardenas, and Niklaus J. Grünwald. (2014) "The Irish potato
famine pathogen Phytophthora infestans originated in central Mexico rather than the Andes." Pro-
ceedings of the National Academy of Sciences 111:8791-8796. doi: doi:10.1073/pnas.1401884111

Kamvar, Z. N., Larsen, M. M., Kanaskie, A. M., Hansen, E. M., & Grünwald, N. J. (2015). Spatial
and temporal analysis of populations of the sudden oak death pathogen in Oregon forests. Phy-
topathology 105:982-989. doi: doi:10.1094/PHYTO12140350FI

Goss, E. M., Larsen, M., Chastagner, G. A., Givens, D. R., and Grünwald, N. J. 2009. Popula-
tion genetic analysis infers migration pathways of Phytophthora ramorum in US nurseries. PLoS
Pathog. 5:e1000583. doi: doi:10.1371/journal.ppat.1000583

aboot Calculate a dendrogram with bootstrap support using any distance
applicable to genind or genclone objects.

Description

Calculate a dendrogram with bootstrap support using any distance applicable to genind or genclone
objects.

Usage

aboot(
x,
strata = NULL,
tree = "upgma",
distance = "nei.dist",
sample = 100,
cutoff = 0,
showtree = TRUE,
missing = "mean",
mcutoff = 0,
quiet = FALSE,
root = NULL,
...

)

Arguments

x a genind-class, genpop-class, genclone-class, genlight, snpclone or matrix ob-
ject.

strata a formula specifying the strata to be used to convert x to a genclone object if x
is a genind object. Defaults to NULL. See details.

tree a text string or function that can calculate a tree from a distance matrix. Defaults
to "upgma". Note that you must load the package with the function for it to work.

https://doi.org/10.1073/pnas.1401884111
https://doi.org/10.1094/PHYTO-12-14-0350-FI
https://doi.org/10.1371/journal.ppat.1000583

aboot 9

distance a character or function defining the distance to be applied to x. Defaults to
nei.dist().

sample An integer representing the number of bootstrap replicates Default is 100.

cutoff An integer from 0 to 100 setting the cutoff value to return the bootstrap values
on the nodes. Default is 0.

showtree If TRUE (Default), a dendrogram will be plotted. If FALSE, nothing will be plot-
ted.

missing any method to be used by missingno(): "mean" (default), "zero", "loci", "geno-
type", or "ignore".

mcutoff a value between 0 (default) and 1 defining the percentage of tolerable missing
data if the missing parameter is set to "loci" or "genotype". This should only
be set if the distance metric can handle missing data.

quiet if FALSE (default), a progress bar will be printed to screen.

root is the tree rooted? This is a parameter passed off to ape::boot.phylo(). If
the tree parameter returns a rooted tree (like UPGMA), this should be TRUE,
otherwise (like neighbor-joining), it should be false. When set to NULL (default),
the tree is considered rooted if ape::is.ultrametric() is true.

... any parameters to be passed off to the distance method.

Details

This function automates the process of bootstrapping genetic data to create a dendrogram with
bootstrap support on the nodes. It will randomly sample with replacement the loci of a gen
(genind/genpop) object or the columns of a numeric matrix, assuming that all loci/columns are in-
dependent. The process of randomly sampling gen objects with replacement is carried out through
the use of an internal class called bootgen. This is necessary due to the fact that columns in the
genind matrix are defined as alleles and are thus interrelated. This function will specifically boot-
strap loci so that results are biologically relevant. With this function, the user can also define a
custom distance to be performed on the genind or genclone object. If you have a data frame-like
object where all of the columns are independent or pairs of columns are independent, then it may
be simpler to use ape::boot.phylo() to calculate your bootstrap support values.

the strata argument: There is an argument called strata. This argument is useful for when you
want to bootstrap by populations from a adegenet::genind() object. When you specify strata,
the genind object will be converted to adegenet::genpop() with the specified strata.

Value

an object of class ape::phylo().

Note

prevosti.dist() and diss.dist() are exactly the same, but diss.dist() scales better for large
numbers of individuals (n > 125) at the cost of required memory.

missing data: Missing data is not allowed by many of the distances. Thus, one of the first
steps of this function is to treat missing data by setting it to the average allele frequency in the

10 aboot

data set. If you are using a distance that can handle missing data (Prevosti’s distance), you can set
missing = "ignore" to allow the distance function to handle any missing data. See missingno()
for details on missing data.

Bruvo’s Distance: While calculation of Bruvo’s distance is possible with this function, it is
optimized in the function bruvo.boot().

References

Kamvar ZN, Brooks JC and Grünwald NJ (2015) Novel R tools for analysis of genome-wide
population genetic data with emphasis on clonality. Frontiers in Genetics 6:208. doi:10.3389/
fgene.2015.00208

See Also

nei.dist() edwards.dist() rogers.dist() reynolds.dist() prevosti.dist() diss.dist()
bruvo.boot() ape::boot.phylo() adegenet::dist.genpop() dist() bootgen2genind() boot-
gen

Examples

data(nancycats)
nan9 <- popsub(nancycats, 9)

set.seed(9999)
Generate a tree using nei's distance
neinan <- aboot(nan9, dist = nei.dist)

set.seed(9999)
Generate a tree using custom distance
bindist <- function(x) dist(tab(x), method = "binary")
binnan <- aboot(nan9, dist = bindist)

Not run:
Distances from other packages.
#
Sometimes, distance functions from other packages will have the constraint
that the incoming data MUST be genind. Internally, aboot uses the
bootgen class (class?bootgen) to shuffle loci, and will throw an error
The function bootgen2genind helps fix that. Here's an example of a function
that expects a genind class from above
bindist <- function(x){

stopifnot(is.genind(x))
dist(tab(x), method = "binary")

}
#
Fails:
aboot(nan9, dist = bindist)
Error: is.genind(x) is not TRUE
#
Add bootgen2genind to get it working!
Works:

https://doi.org/10.3389/fgene.2015.00208
https://doi.org/10.3389/fgene.2015.00208

Aeut 11

aboot(nan9, dist = function(x) bootgen2genind(x) %>% bindist)

AFLP data
data(Aeut)

Nei's distance
anei <- aboot(Aeut, dist = nei.dist, sample = 1000, cutoff = 50)

Rogers' distance
arog <- aboot(Aeut, dist = rogers.dist, sample = 1000, cutoff = 50)

This can also be run on genpop objects
strata(Aeut) <- other(Aeut)$population_hierarchy[-1]
Aeut.gc <- as.genclone(Aeut)
setPop(Aeut.gc) <- ~Pop/Subpop
Aeut.pop <- genind2genpop(Aeut.gc)
set.seed(5000)
aboot(Aeut.pop, sample = 1000) # compare to Grunwald et al. 2006

You can also use the strata argument to convert to genpop inside the function.
set.seed(5000)
aboot(Aeut.gc, strata = ~Pop/Subpop, sample = 1000)

And genlight objects
From glSim:
1,000 non structured SNPs, 100 structured SNPs
x <- glSim(100, 1e3, n.snp.struc=100, ploid=2)
aboot(x, distance = bitwise.dist)

Utilizing other tree methods

library("ape")

aboot(Aeut.pop, tree = fastme.bal, sample = 1000)

Utilizing options in other tree methods

myFastME <- function(x) fastme.bal(x, nni = TRUE, spr = FALSE, tbr = TRUE)
aboot(Aeut.pop, tree = myFastME, sample = 1000)

End(Not run)

Aeut Oomycete root rot pathogen *Aphanomyces euteiches* AFLP data

Description

The Aeut dataset consists of 187 isolates of the Oomycete root rot pathogen, *Aphanomyces eute-
iches* collected from two different fields in NW Oregon and W Washington, USA.

12 as.snpclone

Usage

data(Aeut)

Format

a [genind()] object with two populations containing a data frame in the ‘other‘ slot called ‘popula-
tion_hierarchy‘. This data frame gives indices of the populations and subpopulations for the data
set.

References

Grunwald, NJ and Hoheisel, G.A. 2006. Hierarchical Analysis of Diversity, Selfing, and Ge-
netic Differentiation in Populations of the Oomycete *Aphanomyces euteiches*. Phytopathology
96:1134-1141 doi: doi:10.1094/PHYTO961134

as.snpclone Create a snpclone object from a genlight object.

Description

Wrapper for snpclone initializer.

Usage

as.snpclone(x, ..., parallel = FALSE, n.cores = NULL, mlg, mlgclass = TRUE)

Arguments

x a genlight or snpclone object

... arguments to be passed on to the genlight constructor. These are not used if x is
not missing.

parallel should the parallel package be used to construct the object?

n.cores how many cores should be utilized? See documentation for genlight for de-
tails.

mlg a vector of multilocus genotypes or an object of class MLG for the new snpclone
object.

mlgclass if TRUE (default), the multilocus genotypes will be represented as an MLG object.

Author(s)

Zhian N. Kamvar

https://doi.org/10.1094/PHYTO-96-1134

bitwise.dist 13

Examples

(x <- as.snpclone(glSim(100, 1e3, ploid=2)))
Not run:
Without parallel processing
system.time(x <- as.snpclone(glSim(1000, 1e5, ploid=2)))

With parallel processing... doesn't really save you much time.
system.time(x <- as.snpclone(glSim(1000, 1e5, ploid=2, parallel = TRUE),

parallel = TRUE))

End(Not run)

bitwise.dist Calculate dissimilarity or Euclidean distance for genlight objects

Description

This function calculates both dissimilarity and Euclidean distances for genlight or snpclone objects.

Usage

bitwise.dist(
x,
percent = TRUE,
mat = FALSE,
missing_match = TRUE,
scale_missing = FALSE,
euclidean = FALSE,
differences_only = FALSE,
threads = 0L

)

Arguments

x a genlight or snpclone object.

percent logical. Should the distance be represented from 0 to 1? Default set to TRUE.
FALSE will return the distance represented as integers from 1 to n where n is the
number of loci. This option has no effect if euclidean = TRUE

mat logical. Return a matrix object. Default set to FALSE, returning a dist object.
TRUE returns a matrix object.

missing_match logical. Determines whether two samples differing by missing data in a loca-
tion should be counted as matching at that location. Default set to TRUE, which
forces missing data to match with anything. FALSE forces missing data to not
match with any other information, including other missing data.

14 bitwise.dist

scale_missing A logical. If TRUE, comparisons with missing data is scaled up proportionally to
the number of columns used by multiplying the value by m / (m - x) where m
is the number of loci and x is the number of missing sites. This option matches
the behavior of base R’s dist() function. Defaults to FALSE.

euclidean logical. if TRUE, the Euclidean distance will be calculated.
differences_only

logical. When differences_only = TRUE, the output will reflect the number
of different loci. The default setting, differences_only = FALSE, reflects the
number of different alleles. Note: this has no effect on haploid organisms since
1 locus = 1 allele. This option is NOT recommended.

threads The maximum number of parallel threads to be used within this function. A
value of 0 (default) will attempt to use as many threads as there are available
cores/CPUs. In most cases this is ideal. A value of 1 will force the function to
run serially, which may increase stability on some systems. Other values may
be specified, but should be used with caution.

Details

The default distance calculated here is quite simple and goes by many names depending on its
application. The most familiar name might be the Hamming distance, or the number of differences
between two strings.

As of poppr version 2.8.0, this function now also calculates Euclidean distance and is considerably
faster and more memory-efficient than the standard dist() function.

Value

A dist object containing pairwise distances between samples.

Note

This function is optimized for genlight and snpclone objects. This does not mean that it is a catch-all
optimization for SNP data. Three assumptions must be met for this function to work:

1. SNPs are bi-allelic

2. Samples are haploid or diploid

3. All samples have the same ploidy

If the user supplies a genind or genclone object, prevosti.dist() will be used for calculation.

Author(s)

Zhian N. Kamvar, Jonah C. Brooks

See Also

diss.dist(), snpclone, genlight, win.ia(), samp.ia()

boot.ia 15

Examples

set.seed(999)
x <- glSim(n.ind = 10, n.snp.nonstruc = 5e2, n.snp.struc = 5e2, ploidy = 2)
x
Assess fraction of different alleles
system.time(xd <- bitwise.dist(x, threads = 1L))
xd

Calculate Euclidean distance
system.time(xdt <- bitwise.dist(x, euclidean = TRUE, scale_missing = TRUE, threads = 1L))
xdt

Not run:

This function is more efficient in both memory and speed than [dist()] for
calculating Euclidean distance on genlight objects. For example, we can
observe a clear speed increase when we attempt a calculation on 100k SNPs
with 10% missing data:

set.seed(999)
mat <- matrix(sample(c(0:2, NA),

100000 * 50,
replace = TRUE,
prob = c(0.3, 0.3, 0.3, 0.1)),

nrow = 50)
glite <- new("genlight", mat, ploidy = 2)

Default Euclidean distance
system.time(dist(glite))

Bitwise dist
system.time(bitwise.dist(glite, euclidean = TRUE, scale_missing = TRUE))

End(Not run)

boot.ia Bootstrap the index of association

Description

This function will perform the index of association on a bootstrapped data set multiple times to
create a distribution, showing the variation of the index due to repeat observations.

Usage

boot.ia(gid, how = "partial", reps = 999, quiet = FALSE, ...)

16 bootgen2genind

Arguments

gid a genind or genclone object

how method of bootstrap. The default how = "partial" will include all the unique
genotypes and sample with replacement from the unique genotypes until the to-
tal number of individuals has been reached. Using how = "full" will randomly
sample with replacement from the data as it is. Using how = "psex" will sample
from the full data set after first weighting the samples via the probability of en-
countering the nth occurence of a particular multilocus genotype. See psex()
for details.

reps an integer specifying the number of replicates to perform. Defaults to 999.

quiet a logical. If FALSE, a progress bar will be displayed. If TRUE, the progress bar is
suppressed.

... options passed on to psex()

Value

a data frame with the index of association and standardized index of association in columns. Num-
ber of rows represents the number of reps.

Note

This function is experimental. Please do not use this unless you know what you are doing.

See Also

ia(), pair.ia(), psex()

Examples

data(Pinf)
boot.ia(Pinf, reps = 99)

bootgen2genind Switch between genind and genclone objects.

Description

as.genclone will create a genclone object from a genind object OR anything that can be passed to
the genind initializer.

bootgen2genind 17

Usage

bootgen2genind(bg)

as.genclone(x, ..., mlg, mlgclass = TRUE)

genclone2genind(x)

as.genambig(x)

Arguments

bg a bootgen object

x a genind or genclone object

... arguments passed on to the genind constructor

mlg an optional vector of multilocus genotypes as integers

mlgclass should the mlg slot be of class MLG?

Details

genclone2genind will remove the mlg slot from the genclone object, creating a genind object.

as.genambig will convert a genind or genclone object to a polysat genambig class.

Author(s)

Zhian N. Kamvar

See Also

splitStrata, genclone, read.genalex aboot

Examples

data(Aeut)
Aeut

Conversion to genclone --
Aeut.gc <- as.genclone(Aeut)
Aeut.gc

Conversion to genind --
Aeut.gi <- genclone2genind(Aeut.gc)
Aeut.gi

Conversion to polysat's "genambig" class --------------------------------
if (require("polysat")) {

data(Pinf)
Pinf.gb <- as.genambig(Pinf)
summary(Pinf.gb)

}

18 bruvo.boot

data(nancycats)

Conversion to bootgen for random sampling of loci -----------------------
nan.bg <- new("bootgen", nancycats[pop = 9])
nan.bg

Conversion back to genind ---
nan.gid <- bootgen2genind(nan.bg)
nan.gid

bruvo.boot Create a tree using Bruvo’s Distance with non-parametric bootstrap-
ping.

Description

Create a tree using Bruvo’s Distance with non-parametric bootstrapping.

Usage

bruvo.boot(
pop,
replen = 1,
add = TRUE,
loss = TRUE,
sample = 100,
tree = "upgma",
showtree = TRUE,
cutoff = NULL,
quiet = FALSE,
root = NULL,
...

)

Arguments

pop a genind or genclone object

replen a vector of integers indicating the length of the nucleotide repeats for each
microsatellite locus.

add if TRUE, genotypes with zero values will be treated under the genome addition
model presented in Bruvo et al. 2004.

loss if TRUE, genotypes with zero values will be treated under the genome loss model
presented in Bruvo et al. 2004.

sample an integer indicated the number of bootstrap replicates desired.

tree any function that can generate a tree from a distance matrix. Default is upgma.

bruvo.boot 19

showtree logical if TRUE, a tree will be plotted with nodelabels.

cutoff integer the cutoff value for bootstrap node label values (between 0 and 100).

quiet logical defaults to FALSE. If TRUE, a progress bar and messages will be sup-
pressed.

root logical This is a parameter passed on to boot.phylo. If the tree argument
produces a rooted tree (e.g. "upgma"), then this value should be TRUE. If it
produces an unrooted tree (e.g. "nj"), then the value should be FALSE. By default,
it is set to NULL, which will assume an unrooted phylogeny unless the function
name contains "upgma".

... any argument to be passed on to boot.phylo. eg. quiet = TRUE.

Details

This function will calculate a tree based off of Bruvo’s distance and then utilize boot.phylo to
randomly sample loci with replacement, recalculate the tree, and tally up the bootstrap support
(measured in percent success). While this function can take any tree function, it has native support
for two algorithms: nj and upgma. If you want to use any other functions, you must load the package
before you use them (see examples).

Value

a tree of class phylo with nodelables

Note

Please refer to the documentation for bruvo.dist for details on the algorithm. If the user does
not provide a vector of appropriate length for replen , it will be estimated by taking the minimum
difference among represented alleles at each locus. IT IS NOT RECOMMENDED TO RELY ON
THIS ESTIMATION.

Author(s)

Zhian N. Kamvar, Javier F. Tabima

References

Ruzica Bruvo, Nicolaas K. Michiels, Thomas G. D’Souza, and Hinrich Schulenburg. A simple
method for the calculation of microsatellite genotype distances irrespective of ploidy level. Molec-
ular Ecology, 13(7):2101-2106, 2004.

See Also

bruvo.dist, nancycats, upgma, nj, boot.phylo, nodelabels, tab, missingno.

20 bruvo.dist

Examples

Please note that the data presented is assuming that the nancycat dataset
contains all dinucleotide repeats, it most likely is not an accurate
representation of the data.

Load the nancycats dataset and construct the repeat vector.
data(nancycats)
ssr <- rep(2, 9)

Analyze the 1st population in nancycats

bruvo.boot(popsub(nancycats, 1), replen = ssr)

Not run:

Always load the library before you specify the function.
library("ape")

Estimate the tree based off of the BIONJ algorithm.

bruvo.boot(popsub(nancycats, 9), replen = ssr, tree = bionj)

Utilizing balanced FastME
bruvo.boot(popsub(nancycats, 9), replen = ssr, tree = fastme.bal)

To change parameters for the tree, wrap it in a function.
For example, let's build the tree without utilizing subtree-prune-regraft

myFastME <- function(x) fastme.bal(x, nni = TRUE, spr = FALSE, tbr = TRUE)
bruvo.boot(popsub(nancycats, 9), replen = ssr, tree = myFastME)

End(Not run)

bruvo.dist Bruvo’s distance for microsatellites

Description

Calculate the average Bruvo’s distance over all loci in a population.

Usage

bruvo.dist(pop, replen = 1, add = TRUE, loss = TRUE, by_locus = FALSE)

bruvo.between(
query,
ref,

bruvo.dist 21

replen = 1,
add = TRUE,
loss = TRUE,
by_locus = FALSE

)

Arguments

pop a genind or genclone object

replen a vector of integers indicating the length of the nucleotide repeats for each
microsatellite locus. E.g. a locus with a (CAT) repeat would have a replen value
of 3. (Also see fix_replen)

add if TRUE, genotypes with zero values will be treated under the genome addition
model presented in Bruvo et al. 2004. See the Note section for options.

loss if TRUE, genotypes with zero values will be treated under the genome loss model
presented in Bruvo et al. 2004. See the Note section for options.

by_locus indicator to get the results per locus. The default setting is by_locus = FALSE,
indicating that Bruvo’s distance is to be averaged over all loci. When by_locus
= TRUE, a list of distance matrices will be returned.

query a genind or genclone object

ref a genind or genclone object

Details

Bruvo’s distance between two alleles is calculated as

d = 1− 2−|x|

, where x is the number of repeat units between the two alleles (see the Algorithms and Equations
vignette for more details). These distances are calculated over all combinations of alleles at a locus
and then the minimum average distance between allele combinations is taken as the distance for that
locus. All loci are then averaged over to obtain the distance between two samples. Missing data is
ignored (in the same fashion as mean(c(1:9, NA), na.rm = TRUE)) if all alleles are missing. See
the next section for other cases.

Polyploids: Ploidy is irrelevant with respect to calculation of Bruvo’s distance. However, since
it makes a comparison between all alleles at a locus, it only makes sense that the two loci need
to have the same ploidy level. Unfortunately for polyploids, it’s often difficult to fully separate
distinct alleles at each locus, so you end up with genotypes that appear to have a lower ploidy
level than the organism.
To help deal with these situations, Bruvo has suggested three methods for dealing with these
differences in ploidy levels:

• Infinite Model - The simplest way to deal with it is to count all missing alleles as infinitely
large so that the distance between it and anything else is 1. Aside from this being computa-
tionally simple, it will tend to inflate distances between individuals.

22 bruvo.dist

• Genome Addition Model - If it is suspected that the organism has gone through a recent
genome expansion, the missing alleles will be replace with all possible combinations of
the observed alleles in the shorter genotype. For example, if there is a genotype of [69, 70,
0, 0] where 0 is a missing allele, the possible combinations are: [69, 70, 69, 69], [69, 70, 69,
70], [69, 70, 70, 69], and [69, 70, 70, 70]. The resulting distances are then averaged over the
number of comparisons.

• Genome Loss Model - This is similar to the genome addition model, except that it assumes
that there was a recent genome reduction event and uses the observed values in the full
genotype to fill the missing values in the short genotype. As with the Genome Addition
Model, the resulting distances are averaged over the number of comparisons.

• Combination Model - Combine and average the genome addition and loss models.

As mentioned above, the infinite model is biased, but it is not nearly as computationally intensive
as either of the other models. The reason for this is that both of the addition and loss models
requires replacement of alleles and recalculation of Bruvo’s distance. The number of replacements
required is equal to n^k where where n is the number of potential replacements and k is the number
of alleles to be replaced. To reduce the number of calculations and assumptions otherwise, Bruvo’s
distance will be calculated using the largest observed ploidy in pairwise comparisons. This means
that when comparing [69,70,71,0] and [59,60,0,0], they will be treated as triploids.

Value

an object of class dist or a list of these objects if by_locus = TRUE

Functions

• bruvo.between(): Bruvo’s distance between a query and a reference Only diferences be-
tween query individuals and reference individuals will be reported All other values are NaN

Note

Do not use missingno with this function.

Missing alleles and Bruvo’s distance in poppr versions < 2.5: In earlier versions of poppr,
the authors had assumed that, because the calculation of Bruvo’s distance does not rely on orderd
sets of alleles, the imputation methods in the genome addition and genome loss models would also
assume unordered alleles for creating the hypothetical genotypes. This means that the results from
this imputation did not consider all possible combinations of alleles, resulting in either an over-
or under- estimation of Bruvo’s distance between two samples with two or more missing alleles.
This version of poppr considers all possible combinations when calculating Bruvo’s distance for
incomplete genotype with a negligable gain in computation time.
If you want to see the effect of this change on your data, you can use the global poppr option
old.bruvo.model. Currently, this option is FALSE and you can set it by using options(old.bruvo.model
= TRUE), but make sure to reset it to FALSE afterwards.

Repeat Lengths (replen): The replen argument is crucial for proper analysis of Bruvo’s dis-
tance since the calculation relies on the knowledge of the number of steps between alleles. To
calculate Bruvo’s distance, your raw allele calls are first divided by the repeat lengths and then
rounded. This can create a problem with repeat lengths of even size due to the IEC 60559 standard
that says rounding at 0.5 is to the nearest even number, meaning that it is possible for two alleles

bruvo.dist 23

that are one step apart may appear to be exactly the same. This can be fixed by subtracting a tiny
number from the repeat length with the function fix_replen. Please consider using this before
running Bruvo’s distance.

Model Choice: The add and loss arguments modify the model choice accordingly:

• Infinite Model: add = FALSE, loss = FALSE

• Genome Addition Model: add = TRUE, loss = FALSE

• Genome Loss Model: add = FALSE, loss = TRUE

• Combination Model (DEFAULT): add = TRUE, loss = TRUE

Details of each model choice are described in the Details section, above. Additionally, genotypes
containing all missing values at a locus will return a value of NA and not contribute to the average
across loci.

Repeat Lengths: If the user does not provide a vector of appropriate length for replen , it will
be estimated by taking the minimum difference among represented alleles at each locus. IT IS
NOT RECOMMENDED TO RELY ON THIS ESTIMATION.

Author(s)

Zhian N. Kamvar

David Folarin

References

Ruzica Bruvo, Nicolaas K. Michiels, Thomas G. D’Souza, and Hinrich Schulenburg. A simple
method for the calculation of microsatellite genotype distances irrespective of ploidy level. Molec-
ular Ecology, 13(7):2101-2106, 2004.

See Also

fix_replen, test_replen, bruvo.boot, bruvo.msn

Examples

Please note that the data presented is assuming that the nancycat dataset
contains all dinucleotide repeats, it most likely is not an accurate
representation of the data.

Load the nancycats dataset and construct the repeat vector.
data(nancycats)
names(alleles(nancycats)) <- locNames(nancycats) # small bug in this data set
Assume the alleles are all dinucleotide repeats.
ssr <- rep(2, nLoc(nancycats))
test_replen(nancycats, ssr) # Are the repeat lengths consistent?
(ssr <- fix_replen(nancycats, ssr)) # Nope. We need to fix them.

Analyze the first population in nancycats
bruvo.dist(popsub(nancycats, 1), replen = ssr)

Not run:

24 bruvo.msn

get the per locus estimates:
bruvo.dist(popsub(nancycats, 1), replen = ssr, by_locus = TRUE)

View each population as a heatmap.
sapply(popNames(nancycats), function(x)
heatmap(as.matrix(bruvo.dist(popsub(nancycats, x), replen = ssr)), symm=TRUE))

End(Not run)

bruvo.msn Create minimum spanning network of selected populations using
Bruvo’s distance.

Description

Create minimum spanning network of selected populations using Bruvo’s distance.

Usage

bruvo.msn(
gid,
replen = 1,
add = TRUE,
loss = TRUE,
mlg.compute = "original",
palette = topo.colors,
sublist = "All",
exclude = NULL,
blacklist = NULL,
vertex.label = "MLG",
gscale = TRUE,
glim = c(0, 0.8),
gadj = 3,
gweight = 1,
wscale = TRUE,
showplot = TRUE,
include.ties = FALSE,
threshold = NULL,
clustering.algorithm = NULL,
...

)

Arguments

gid a genind or genclone object

replen a vector of integers indicating the length of the nucleotide repeats for each
microsatellite locus.

bruvo.msn 25

add if TRUE, genotypes with zero values will be treated under the genome addition
model presented in Bruvo et al. 2004.

loss if TRUE, genotypes with zero values will be treated under the genome loss model
presented in Bruvo et al. 2004.

mlg.compute if the multilocus genotypes are set to "custom" (see mll.custom for details) in
your genclone object, this will specify which mlg level to calculate the nodes
from. See details.

palette a vector or function defining the color palette to be used to color the popula-
tions on the graph. It defaults to topo.colors. See examples for details.

sublist a vector of population names or indexes that the user wishes to keep. Default
to "ALL".

exclude a vector of population names or indexes that the user wishes to discard. Default
to NULL.

blacklist DEPRECATED, use exclude.

vertex.label a vector of characters to label each vertex. There are two defaults: "MLG"
will label the nodes with the multilocus genotype from the original data set and
"inds" will label the nodes with the representative individual names.

gscale "grey scale". If this is TRUE, this will scale the color of the edges proportional
to the observed distance, with the lines becoming darker for more related nodes.
See greycurve for details.

glim "grey limit". Two numbers between zero and one. They determine the upper
and lower limits for the gray function. Default is 0 (black) and 0.8 (20% black).
See greycurve for details.

gadj "grey adjust". a positive integer greater than zero that will serve as the ex-
ponent to the edge weight to scale the grey value to represent that weight. See
greycurve for details.

gweight "grey weight". an integer. If it’s 1, the grey scale will be weighted to empha-
size the differences between closely related nodes. If it is 2, the grey scale will
be weighted to emphasize the differences between more distantly related nodes.
See greycurve for details.

wscale "width scale". If this is TRUE, the edge widths will be scaled proportional to
the inverse of the observed distance , with the lines becoming thicker for more
related nodes.

showplot logical. If TRUE, the graph will be plotted. If FALSE, it will simply be returned.

include.ties logical. If TRUE, the graph will include all edges that were arbitrarily passed
over in favor of another edge of equal weight. If FALSE, which is the default,
one edge will be arbitrarily selected when two or more edges are tied, resulting
in a pure minimum spanning network.

threshold numeric. By default, this is NULL, which will have no effect. Any threshold
value passed to this argument will be used in mlg.filter prior to creating the
MSN. If you have a data set that contains contracted MLGs, this argument will
override the threshold in the data set. See Details.

26 bruvo.msn

clustering.algorithm

string. By default, this is NULL. If threshold = NULL, this argument will have no
effect. When supplied with either "farthest_neighbor", "average_neighbor", or
"nearest_neighbor", it will be passed to mlg.filter prior to creating the MSN.
If you have a data set that contains contracted MLGs, this argument will override
the algorithm in the data set. See Details.

... any other arguments that could go into plot.igraph

Details

The minimum spanning network generated by this function is generated via igraph’s minimum.spanning.tree.
The resultant graph produced can be plotted using igraph functions, or the entire object can be plot-
ted using the function plot_poppr_msn, which will give the user a scale bar and the option to layout
your data.

node sizes: The area of the nodes are representative of the number of samples. Because igraph
scales nodes by radius, the node sizes in the graph are represented as the square root of the number
of samples.

mlg.compute: Each node on the graph represents a different multilocus genotype. The edges on
the graph represent genetic distances that connect the multilocus genotypes. In genclone objects, it
is possible to set the multilocus genotypes to a custom definition. This creates a problem for clone
correction, however, as it is very possible to define custom lineages that are not monophyletic.
When clone correction is performed on these definitions, information is lost from the graph. To
circumvent this, The clone correction will be done via the computed multilocus genotypes, either
"original" or "contracted". This is specified in the mlg.compute argument, above.

contracted multilocus genotypes: If your incoming data set is of the class genclone, and it
contains contracted multilocus genotypes, this function will retain that information for creating the
minimum spanning network. You can use the arguments threshold and clustering.algorithm
to change the threshold or clustering algorithm used in the network. For example, if you have a
data set that has a threshold of 0.1 and you wish to have a minimum spanning network without a
threshold, you can simply add threshold = 0.0, and no clustering will happen.
The threshold and clustering.algorithm arguments can also be used to filter un-contracted
data sets.

Value

graph a minimum spanning network with nodes corresponding to MLGs within the
data set. Colors of the nodes represent population membership. Width and color
of the edges represent distance.

populations a vector of the population names corresponding to the vertex colors

colors a vector of the hexadecimal representations of the colors used in the vertex colors

Note

• Please see the documentation for bruvo.dist for details on the algorithm.

• The edges of these graphs may cross each other if the graph becomes too large.

bruvo.msn 27

• The nodes in the graph represent multilocus genotypes. The colors of the nodes are represen-
tative of population membership. It is not uncommon to see different populations containing
the same multilocus genotype.

Author(s)

Zhian N. Kamvar, Javier F. Tabima

References

Ruzica Bruvo, Nicolaas K. Michiels, Thomas G. D’Souza, and Hinrich Schulenburg. A simple
method for the calculation of microsatellite genotype distances irrespective of ploidy level. Molec-
ular Ecology, 13(7):2101-2106, 2004.

See Also

bruvo.dist, nancycats, plot_poppr_msn, mst bruvo.boot, greycurve poppr.msn

Examples

Load the data set.
data(nancycats)

View populations 8 and 9 with default colors.
bruvo.msn(nancycats, replen = rep(2, 9), sublist=8:9, vertex.label="inds",

vertex.label.cex=0.7, vertex.label.dist=0.4)
Not run:
View heat colors.
bruvo.msn(nancycats, replen=rep(2, 9), sublist=8:9, vertex.label="inds",
palette=heat.colors, vertex.label.cex=0.7, vertex.label.dist=0.4)

View custom colors. Here, we use black and orange.
bruvo.msn(nancycats, replen=rep(2, 9), sublist=8:9, vertex.label="inds",
palette = colorRampPalette(c("orange", "black")), vertex.label.cex=0.7,
vertex.label.dist=0.4)

View with darker shades of grey (setting the upper limit to 1/2 black 1/2 white).
bruvo.msn(nancycats, replen=rep(2, 9), sublist=8:9, vertex.label="inds",
palette = colorRampPalette(c("orange", "black")), vertex.label.cex=0.7,
vertex.label.dist=0.4, glim=c(0, 0.5))

View with no grey scaling.
bruvo.msn(nancycats, replen=rep(2, 9), sublist=8:9, vertex.label="inds",
palette = colorRampPalette(c("orange", "black")), vertex.label.cex=0.7,
vertex.label.dist=0.4, gscale=FALSE)

View with no line widths.
bruvo.msn(nancycats, replen=rep(2, 9), sublist=8:9, vertex.label="inds",
palette = colorRampPalette(c("orange", "black")), vertex.label.cex=0.7,
vertex.label.dist=0.4, wscale=FALSE)

View with no scaling at all.

28 clonecorrect

bruvo.msn(nancycats, replen=rep(2, 9), sublist=8:9, vertex.label="inds",
palette = colorRampPalette(c("orange", "black")), vertex.label.cex=0.7,
vertex.label.dist=0.4, gscale=FALSE)

View the whole population, but without labels.
bruvo.msn(nancycats, replen=rep(2, 9), vertex.label=NA)

End(Not run)

clonecorrect Remove potential bias caused by cloned genotypes in genind or gen-
clone object.

Description

This function removes any duplicated multilocus genotypes from any specified population strata.

Usage

clonecorrect(pop, strata = 1, combine = FALSE, keep = 1)

Arguments

pop a genind, genclone, or snpclone object

strata a hierarchical formula or numeric vector. This will define the columns of the
data frame in the strata slot to use.

combine logical. When set to TRUE, the strata will be combined to create a new popu-
lation for the clone-corrected genind or genclone object.

keep integer. When combine is set to FALSE, you can use this flag to choose the
levels of your population strata. For example: if your clone correction strata is
set to "Pop", "Subpop", and "Year", and you want to analyze your populations
with respect to year, you can set keep = c(1,3).

Details

This function will clone correct based on the stratification provided. To clone correct indiscrimi-
nately of population structure, set strata = NA.

Value

a clone corrected genclone, snpclone, or genind object.

Author(s)

Zhian N. Kamvar

clonecorrect 29

Examples

LOAD A. euteiches data set
data(Aeut)

Redefine it as a genclone object
Aeut <- as.genclone(Aeut)
strata(Aeut) <- other(Aeut)$population_hierarchy[-1]

Check the number of multilocus genotypes
mlg(Aeut)
popNames(Aeut)

Clone correct at the population level.
Aeut.pop <- clonecorrect(Aeut, strata = ~Pop)
mlg(Aeut.pop)
popNames(Aeut.pop)

Not run:
Clone correct at the subpopulation level with respect to population and
combine.
Aeut.subpop <- clonecorrect(Aeut, strata = ~Pop/Subpop, combine=TRUE)
mlg(Aeut.subpop)
popNames(Aeut.subpop)

Do the same, but set to the population level.
Aeut.subpop2 <- clonecorrect(Aeut, strata = ~Pop/Subpop, keep=1)
mlg(Aeut.subpop2)
popNames(Aeut.subpop2)

LOAD H3N2 dataset
data(H3N2)

strata(H3N2) <- other(H3N2)$x

Extract only the individuals located in China
country <- clonecorrect(H3N2, strata = ~country)

How many isolates did we have from China before clone correction?
sum(strata(H3N2, ~country) == "China") # 155

How many unique isolates from China after clone correction?
sum(strata(country, ~country) == "China") # 79

Something a little more complicated. (This could take a few minutes on
slower computers)

setting the hierarchy to be Country > Year > Month
c.y.m <- clonecorrect(H3N2, strata = ~year/month/country)

How many isolates in the original data set?
nInd(H3N2) # 1903

30 cutoff_predictor

How many after we clone corrected for country, year, and month?
nInd(c.y.m) # 1190

End(Not run)

cutoff_predictor Predict cutoff thresholds for use with mlg.filter

Description

Given a series of thresholds for a data set that collapse it into one giant cluster, this will search
the top fraction of threshold differences to find the largest difference. The average between the
thresholds spanning that difference is the cutoff threshold defining the clonal lineage threshold.

Usage

cutoff_predictor(thresholds, fraction = 0.5)

Arguments

thresholds a vector of numerics coming from mlg.filter where the threshold has been set to
the maximum threshold theoretically possible.

fraction the fraction of the data to seek the threshold.

Value

a numeric value representing the threshold at which multilocus lineages should be defined.

Note

This function originally appeared in doi:10.5281/zenodo.17424. This is a bit of a blunt instrument.

Author(s)

Zhian N. Kamvar

References

ZN Kamvar, JC Brooks, and NJ Grünwald. 2015. Supplementary Material for Frontiers Plant
Genetics and Genomics ’Novel R tools for analysis of genome-wide population genetic data with
emphasis on clonality’. DOI: doi:10.5281/zenodo.17424

Kamvar ZN, Brooks JC and Grünwald NJ (2015) Novel R tools for analysis of genome-wide
population genetic data with emphasis on clonality. Front. Genet. 6:208. doi: doi:10.3389/
fgene.2015.00208

See Also

filter_stats mlg.filter

https://doi.org/10.5281/zenodo.17424
https://doi.org/10.5281/zenodo.17424
https://doi.org/10.3389/fgene.2015.00208
https://doi.org/10.3389/fgene.2015.00208

diss.dist 31

Examples

data(Pinf)
pinfreps <- fix_replen(Pinf, c(2, 2, 6, 2, 2, 2, 2, 2, 3, 3, 2))
pthresh <- filter_stats(Pinf, distance = bruvo.dist, replen = pinfreps,

plot = TRUE, stats = "THRESHOLD", threads = 1L)

prediction for farthest neighbor
cutoff_predictor(pthresh$farthest)

prediction for all algorithms
sapply(pthresh, cutoff_predictor)

diss.dist Calculate a distance matrix based on relative dissimilarity

Description

diss.dist uses the same discrete dissimilarity matrix utilized by the index of association (see ia for
details). By default, it returns a distance reflecting the number of allelic differences between two
individuals. When percent = TRUE, it returns a ratio of the number of observed differences by the
number of possible differences. Eg. two individuals who share half of the same alleles will have a
distance of 0.5. This function can analyze distances for any marker system.

Usage

diss.dist(x, percent = FALSE, mat = FALSE)

Arguments

x a genind object.

percent logical. Should the distance be represented as a percent? If set to FALSE
(default), the distance will be reflected as the number of alleles differing between
to individuals. When set to TRUE, These will be divided by the ploidy multiplied
by the number of loci.

mat logical. Return a matrix object. Default set to FALSE, returning a dist object.
TRUE returns a matrix object.

Details

The distance calculated here is quite simple and goes by many names, depending on its application.
The most familiar name might be the Hamming distance, or the number of differences between two
strings.

Value

Pairwise distances between individuals present in the genind object.

32 diversity_boot

Note

When percent = TRUE, this is exactly the same as provesti.dist, except that it performs better
for large numbers of individuals (n > 125) at the cost of available memory.

Author(s)

Zhian N. Kamvar

See Also

prevosti.dist, bitwise.dist (for SNP data)

Examples

A simple example. Let's analyze the mean distance among populations of A.
euteiches.

data(Aeut)
mean(diss.dist(popsub(Aeut, 1)))
Not run:
mean(diss.dist(popsub(Aeut, 2)))
mean(diss.dist(Aeut))

End(Not run)

diversity_boot Perform a bootstrap analysis on diversity statistics

Description

This function is intended to perform bootstrap statistics on a matrix of multilocus genotype counts
in different populations. Results from this function should be interpreted carefully as the default
statistics are known to have a downward bias. See the details for more information.

Usage

diversity_boot(
tab,
n,
n.boot = 1L,
n.rare = NULL,
H = TRUE,
G = TRUE,
lambda = TRUE,
E5 = TRUE,
...

)

diversity_boot 33

Arguments

tab a table produced from the poppr function mlg.table(). MLGs in columns and
populations in rows

n an integer > 0 specifying the number of bootstrap replicates to perform (corre-
sponds to R in the function boot::boot().

n.boot an integer specifying the number of samples to be drawn in each bootstrap repli-
cate. If n.boot < 2 (default), the number of samples drawn for each bootstrap
replicate will be equal to the number of samples in the data set.

n.rare a sample size at which all resamplings should be performed. This should be
no larger than the smallest sample size. Defaults to NULL, indicating that each
population will be sampled at its own size.

H logical whether or not to calculate Shannon’s index

G logical whether or not to calculate Stoddart and Taylor’s index (aka inverse
Simpson’s index).

lambda logical whether or not to calculate Simpson’s index

E5 logical whether or not to calculate Evenness

... other parameters passed on to boot::boot() and diversity_stats().

Details

Bootstrapping is performed in three ways:

• if n.rare is a number greater than zero, then bootstrapping is performed by randomly sam-
pling without replacement n.rare samples from the data.

\item if `n.boot` is greater than 1, bootstrapping is performed by
sampling n.boot samples from a multinomial distribution weighted by the
proportion of each MLG in the data.

\item if `n.boot` is less than 2, bootstrapping is performed by
sampling N samples from a multinomial distribution weighted by the
proportion of each MLG in the data.

Downward Bias: When sampling with replacement, the diversity statistics here present a down-
ward bias partially due to the small number of samples in the data. The result is that the mean of
the bootstrapped samples will often be much lower than the observed value. Alternatively, you
can increase the sample size of the bootstrap by increasing the size of n.boot. Both of these
methods should be taken with caution in interpretation. There are several R packages freely avail-
able that will calculate and perform bootstrap estimates of Shannon and Simpson diversity metrics
(eg. entropart, entropy, simboot, and EntropyEstimation. These packages also offer unbiased
estimators of Shannon and Simpson diversity. Please take care when attempting to interpret the
results of this function.

Value

a list of objects of class "boot".

34 diversity_ci

Author(s)

Zhian N. Kamvar

See Also

diversity_stats() for basic statistic calculation, diversity_ci() for confidence intervals and
plotting, and poppr(). For bootstrap sampling: stats::rmultinom() boot::boot()

Examples

library(poppr)
data(Pinf)
tab <- mlg.table(Pinf, plot = FALSE)
diversity_boot(tab, 10L)
Not run:
This can be done in a parallel fashion (OSX uses "multicore", Windows uses "snow")
system.time(diversity_boot(tab, 10000L, parallel = "multicore", ncpus = 4L))
system.time(diversity_boot(tab, 10000L))

End(Not run)

diversity_ci Perform bootstrap statistics, calculate, and plot confidence intervals.

Description

This function is for calculating bootstrap statistics and their confidence intervals. It is important
to note that the calculation of confidence intervals is not perfect (See Details). Please be cautious
when interpreting the results.

Usage

diversity_ci(
tab,
n = 1000,
n.boot = 1L,
ci = 95,
total = TRUE,
rarefy = FALSE,
n.rare = 10,
plot = TRUE,
raw = TRUE,
center = TRUE,
...

)

diversity_ci 35

Arguments

tab a genind(), genclone(), snpclone(), OR a matrix produced from mlg.table().
n an integer defining the number of bootstrap replicates (defaults to 1000).
n.boot an integer specifying the number of samples to be drawn in each bootstrap repli-

cate. If n.boot < 2 (default), the number of samples drawn for each bootstrap
replicate will be equal to the number of samples in the data set. See Details.

ci the percent for confidence interval.
total argument to be passed on to mlg.table() if tab is a genind object.
rarefy if TRUE, bootstrapping will be performed on the smallest population size or the

value of n.rare, whichever is larger. Defaults to FALSE, indicating that boot-
strapping will be performed respective to each population size.

n.rare an integer specifying the smallest size at which to resample data. This is only
used if rarefy = TRUE.

plot If TRUE (default), boxplots will be produced for each population, grouped by
statistic. Colored dots will indicate the observed value.This plot can be retrieved
by using p <- last_plot() from the ggplot2 package.

raw if TRUE (default) a list containing three elements will be returned
center if TRUE (default), the confidence interval will be centered around the observed

statistic. Otherwise, if FALSE, the confidence interval will be bias-corrected nor-
mal CI as reported from boot::boot.ci()

... parameters to be passed on to boot::boot() and diversity_stats()

Details

Bootstrapping: For details on the bootstrapping procedures, see diversity_boot(). Default
bootstrapping is performed by sampling N samples from a multinomial distribution weighted by
the relative multilocus genotype abundance per population where N is equal to the number of
samples in the data set. If n.boot > 2, then n.boot samples are taken at each bootstrap replicate.
When rarefy = TRUE, then samples are taken at the smallest population size without replacement.
This will provide confidence intervals for all but the smallest population.

Confidence intervals: Confidence intervals are derived from the function boot::norm.ci().
This function will attempt to correct for bias between the observed value and the bootstrapped es-
timate. When center = TRUE (default), the confidence interval is calculated from the bootstrapped
distribution and centered around the bias-corrected estimate as prescribed in Marcon (2012). This
method can lead to undesirable properties, such as the confidence interval lying outside of the
maximum possible value. For rarefaction, the confidence interval is simply determined by cal-
culating the percentiles from the bootstrapped distribution. If you want to calculate your own
confidence intervals, you can use the results of the permutations stored in the $boot element of
the output.

Rarefaction: Rarefaction in the sense of this function is simply sampling a subset of the data
at size n.rare. The estimates derived from this method have straightforward interpretations and
allow you to compare diversity across populations since you are controlling for sample size.

Plotting: Results are plotted as boxplots with point estimates. If there is no rarefaction applied,
confidence intervals are displayed around the point estimates. The boxplots represent the actual
values from the bootstrapping and will often appear below the estimates and confidence intervals.

36 diversity_ci

Value

raw = TRUE:

• obs a matrix with observed statistics in columns, populations in rows
• est a matrix with estimated statistics in columns, populations in rows
• CI an array of 3 dimensions giving the lower and upper bound, the index measured, and the

population.
• boot a list containing the output of boot::boot() for each population.

raw = FALSE: a data frame with the statistic observations, estimates, and confidence intervals in
columns, and populations in rows. Note that the confidence intervals are converted to characters
and rounded to three decimal places.

Note

Confidence interval calculation: Almost all of the statistics supplied here have a maximum
when all genotypes are equally represented. This means that bootstrapping the samples will
always be downwardly biased. In many cases, the confidence intervals from the bootstrapped
distribution will fall outside of the observed statistic. The reported confidence intervals here
are reported by assuming the variance of the bootstrapped distribution is the same as the variance
around the observed statistic. As different statistics have different properties, there will not always
be one clear method for calculating confidence intervals. A suggestion for correction in Shannon’s
index is to center the CI around the observed statistic (Marcon, 2012), but there are theoretical
limitations to this. For details, see https://stats.stackexchange.com/q/156235/49413.

User-defined functions: While it is possible to use custom functions with this, there are three
important things to remember when using these functions:

1. The function must return a single value.
2. The function must allow for both matrix and vector inputs
3. The function name cannot match or partially match any arguments
from [boot::boot()]

Anonymous functions are okay
(e.g. function(x) vegan::rarefy(t(as.matrix(x)), 10)).

Author(s)

Zhian N. Kamvar

References

Marcon, E., Herault, B., Baraloto, C. and Lang, G. (2012). The Decomposition of Shannon’s
Entropy and a Confidence Interval for Beta Diversity. Oikos 121(4): 516-522.

See Also

diversity_boot() diversity_stats() poppr() boot::boot() boot::norm.ci() boot::boot.ci()

https://stats.stackexchange.com/q/156235/49413

diversity_stats 37

Examples

library(poppr)
data(Pinf)
diversity_ci(Pinf, n = 100L)
Not run:
With pretty results
diversity_ci(Pinf, n = 100L, raw = FALSE)

This can be done in a parallel fasion (OSX uses "multicore", Windows uses "snow")
system.time(diversity_ci(Pinf, 10000L, parallel = "multicore", ncpus = 4L))
system.time(diversity_ci(Pinf, 10000L))

We often get many requests for a clonal fraction statistic. As this is
simply the number of observed MLGs over the number of samples, we
recommended that people calculate it themselves. With this function, you
can add it in:

CF <- function(x){
x <- drop(as.matrix(x))
if (length(dim(x)) > 1){
res <- rowSums(x > 0)/rowSums(x)

} else {
res <- sum(x > 0)/sum(x)

}
return(res)

}
Show pretty results

diversity_ci(Pinf, 1000L, CF = CF, center = TRUE, raw = FALSE)
diversity_ci(Pinf, 1000L, CF = CF, rarefy = TRUE, raw = FALSE)

End(Not run)

diversity_stats Produce a table of diversity statistics

Description

Calculate diversity statistics on a matrix containing counts of multilocus genotypes per population.

Usage

diversity_stats(z, H = TRUE, G = TRUE, lambda = TRUE, E5 = TRUE, ...)

Arguments

z a table of integers representing counts of MLGs (columns) per population (rows)

H logical whether or not to calculate Shannon’s index

38 diversity_stats

G logical whether or not to calculate Stoddart and Taylor’s index (aka inverse
Simpson’s index).

lambda logical whether or not to calculate Simpson’s index

E5 logical whether or not to calculate Evenness

... any functions that can be calculated on a vector or matrix of genotype counts.

Details

This function will calculate any diversity statistic for counts of multilocus genotypes per population.
This does not count allelic diversity. The calculations of H, G, and lambda are all performed by
vegan::diversity(). E5 is calculated as

E5 =
(1/λ)− 1

eH − 1

.

Value

a numeric matrix giving statistics (columns) for each population (rows).

Author(s)

Zhian N. Kamvar

See Also

diversity_boot() diversity_ci() poppr()

Examples

library(poppr)
data(Pinf)
tab <- mlg.table(Pinf, plot = FALSE)
diversity_stats(tab)
Not run:
Example using the poweRlaw package to calculate the negative slope of the
Pareto distribution.

library("poweRlaw")
power_law_beta <- function(x){

xpow <- displ(x[x > 0]) # Generate the distribution
xpow$setPars(estimate_pars(xpow)) # Estimate the parameters
xdat <- plot(xpow, draw = FALSE) # Extract the data
xlm <- lm(log(y) ~ log(x), data = xdat) # Run log-log linear model for slope
return(-coef(xlm)[2])

}

Beta <- function(x){
x <- drop(as.matrix(x))
if (length(dim(x)) > 1){

filter_stats 39

res <- apply(x, 1, power_law_beta)
} else {

res <- power_law_beta(x)
}
return(res)

}

diversity_stats(tab, B = Beta)

End(Not run)

filter_stats Utilize all algorithms of mlg.filter

Description

This function is a wrapper to mlg.filter. It will calculate all of the stats for mlg.filter utilizing all of
the algorithms.

Usage

filter_stats(
x,
distance = bitwise.dist,
threshold = 1e+06 + .Machine$double.eps^0.5,
stats = "All",
missing = "ignore",
plot = FALSE,
cols = NULL,
nclone = NULL,
hist = "Scott",
threads = 1L,
...

)

Arguments

x a genind, genclone, genlight, or snpclone object

distance a distance function or matrix

threshold a threshold to be passed to mlg.filter (Default: 1e6)

stats what statistics should be calculated.

missing how to treat missing data with mlg.filter

plot If the threshold is a maximum threshold, should the statistics be plotted (Figure
2)

cols the colors to use for each algorithm (defaults to set1 of RColorBrewer).

40 filter_stats

nclone the number of multilocus genotypes you expect for the data. This will draw
horizontal line on the graph at the value nclone and then vertical lines showing
the cutoff thresholds for each algorithm.

hist if you want a histogram to be plotted behind the statistics, select a method here.
Available methods are "sturges", "fd", or "scott" (default) as documented in
hist. If you don’t want to plot the histogram, set hist = NULL.

threads (unused) Previously the number of threads to be used. As of poppr version 2.4.1,
this is by default set to 1.

... extra parameters passed on to the distance function.

Value

a list of results from mlg.filter from the three algorithms. (returns invisibly if plot = TRUE)

Note

This function originally appeared in doi:10.5281/zenodo.17424

Author(s)

Zhian N. Kamvar, Jonah C. Brooks

References

ZN Kamvar, JC Brooks, and NJ Grünwald. 2015. Supplementary Material for Frontiers Plant
Genetics and Genomics ’Novel R tools for analysis of genome-wide population genetic data with
emphasis on clonality’. DOI: doi:10.5281/zenodo.17424

Kamvar ZN, Brooks JC and Grünwald NJ (2015) Novel R tools for analysis of genome-wide
population genetic data with emphasis on clonality. Front. Genet. 6:208. doi: doi:10.3389/
fgene.2015.00208

See Also

mlg.filter cutoff_predictor bitwise.dist diss.dist

Examples

Basic usage example: Bruvo's Distance --------------------------------
data(Pinf)
pinfreps <- fix_replen(Pinf, c(2, 2, 6, 2, 2, 2, 2, 2, 3, 3, 2))
bres <- filter_stats(Pinf, distance = bruvo.dist, replen = pinfreps, plot = TRUE, threads = 1L)
print(bres) # shows all of the statistics

Use these results with cutoff_filter()
print(thresh <- cutoff_predictor(bres$farthest$THRESHOLDS))
mlg.filter(Pinf, distance = bruvo.dist, replen = pinfreps) <- thresh
Pinf

Different distances will give different results -----------------------
nres <- filter_stats(Pinf, distance = nei.dist, plot = TRUE, threads = 1L, missing = "mean")

https://doi.org/10.5281/zenodo.17424
https://doi.org/10.5281/zenodo.17424
https://doi.org/10.3389/fgene.2015.00208
https://doi.org/10.3389/fgene.2015.00208

fix_replen 41

print(thresh <- cutoff_predictor(nres$farthest$THRESHOLDS))
mlg.filter(Pinf, distance = nei.dist, missing = "mean") <- thresh
Pinf

fix_replen Find and fix inconsistent repeat lengths

Description

Attempts to fix inconsistent repeat lengths found by test_replen

Usage

fix_replen(gid, replen, e = 1e-05, fix_some = TRUE)

Arguments

gid a genind or genclone object

replen a numeric vector of repeat motif lengths.

e a number to be subtracted or added to inconsistent repeat lengths to allow for
proper rounding.

fix_some if TRUE (default), when there are inconsistent repeat lengths that cannot be fixed
by subtracting or adding e, those than can be fixed will. If FALSE, the original
repeat lengths will not be fixed.

Details

This function is modified from the version used in doi:10.5281/zenodo.13007.
Before being fed into the algorithm to calculate Bruvo’s distance, the amplicon length is divided
by the repeat unit length. Because of the amplified primer sequence attached to sequence repeat,
this division does not always result in an integer and so the resulting numbers are rounded. The
rounding also protects against slight mis-calls of alleles. Because we know that

(A− e)− (B − e)

r

is equivalent to
A−B

r

, we know that the primer sequence will not alter the relationships between the alleles. Unfortu-
nately for nucleotide repeats that have powers of 2, rounding in R is based off of the IEC 60559
standard (see round), that means that any number ending in 5 is rounded to the nearest even digit.
This function will attempt to alleviate this problem by adding a very small amount to the repeat
length so that division will not result in a 0.5. If this fails, the same amount will be subtracted. If
neither of these work, a warning will be issued and it is up to the user to determine if the fault is in
the allele calls or the repeat lengths.

https://doi.org/10.5281/zenodo.13007

42 fix_replen

Value

a numeric vector of corrected repeat motif lengths.

Author(s)

Zhian N. Kamvar

References

Zhian N. Kamvar, Meg M. Larsen, Alan M. Kanaskie, Everett M. Hansen, & Niklaus J. Grünwald.
Sudden_Oak_Death_in_Oregon_Forests: Spatial and temporal population dynamics of the sudden
oak death epidemic in Oregon Forests. ZENODO, doi:10.5281/zenodo.13007, 2014.

Kamvar, Z. N., Larsen, M. M., Kanaskie, A. M., Hansen, E. M., & Grünwald, N. J. (2015). Spatial
and temporal analysis of populations of the sudden oak death pathogen in Oregon forests. Phy-
topathology 105:982-989. doi: doi:10.1094/PHYTO12140350FI

Ruzica Bruvo, Nicolaas K. Michiels, Thomas G. D’Souza, and Hinrich Schulenburg. A simple
method for the calculation of microsatellite genotype distances irrespective of ploidy level. Molec-
ular Ecology, 13(7):2101-2106, 2004.

See Also

test_replen bruvo.dist bruvo.msn bruvo.boot

Examples

data(Pram)
(Pram_replen <- setNames(c(3, 2, 4, 4, 4), locNames(Pram)))
fix_replen(Pram, Pram_replen)
Let's start with an example of a tetranucleotide repeat motif and imagine
that there are twenty alleles all 1 step apart:
(x <- 1:20L * 4L)
These are the true lengths of the different alleles. Now, let's add the
primer sequence to them.
(PxP <- x + 21 + 21)
Now we make sure that x / 4 is equal to 1:20, which we know each have
1 difference.
x/4
Now, we divide the sequence with the primers by 4 and see what happens.
(PxPc <- PxP/4)
(PxPcr <- round(PxPc))
diff(PxPcr) # we expect all 1s

Let's try that again by subtracting a tiny amount from 4
(PxPc <- PxP/(4 - 1e-5))
(PxPcr <- round(PxPc))
diff(PxPcr)

https://doi.org/10.5281/zenodo.13007
https://doi.org/10.1094/PHYTO-12-14-0350-FI

genclone-class 43

genclone-class GENclone and SNPclone classes

Description

GENclone is an S4 class that extends the genind object.
SNPclone is an S4 class that extends the genlight object.

They will have all of the same attributes as their parent classes, but they will contain one extra
slot to store extra information about multilocus genotypes.

Details

The genclone and snpclone classes will allow for more optimized methods of clone correction.

Previously for genind and genlight objects, multilocus genotypes were not retained after a data set
was subset by population. The new mlg slot allows us to assign the multilocus genotypes and retain
that information no matter how we subset the data set. This new slot can either contain numeric
values for multilocus genotypes OR it can contain a special internal MLG class that allows for custom
multilocus genotype definitions and filtering.

Slots

mlg a vector representing multilocus genotypes for the data set OR an object of class MLG.

Extends

The genclone class extends class "genind", directly.
The snpclone class extends class "genlight", directly.

Note

When calculating multilocus genotypes for genclone objects, a rank function is used, but cal-
culation of multilocus genotypes for snpclone objects is distance-based (via bitwise.dist and
mlg.filter). This means that genclone objects are sensitive to missing data, whereas snpclone
objects are insensitive.

Author(s)

Zhian N. Kamvar

See Also

as.genclone as.snpclone genind genlight strata setPop MLG mll mlg.filter

44 genind2genalex

Examples

Not run:

genclone objects can be created from genind objects
#
data(partial_clone)
partial_clone
(pc <- as.genclone(partial_clone))

snpclone objects can be created from genlight objects
#
set.seed(999)
(gl <- glSim(100, 0, n.snp.struc = 1e3, ploidy = 2, parallel = FALSE))
(sc <- as.snpclone(rbind(gl, gl, parallel = FALSE), parallel = FALSE))
#
Use mlg.filter to create a distance threshold to define multilocus genotypes.
mlg.filter(sc, threads = 1L) <- 0.25
sc # 82 mlgs

End(Not run)

genind2genalex Export data from genind objects to genalex formatted *.csv files.

Description

genind2genalex will export a genclone or genind object to a *.csv file formatted for use in genalex.

Usage

genind2genalex(
gid,
filename = "",
overwrite = FALSE,
quiet = FALSE,
pop = NULL,
allstrata = TRUE,
geo = FALSE,
geodf = "xy",
sep = ",",
sequence = FALSE

)

Arguments

gid a genclone or genind object.

genind2genalex 45

filename a string indicating the name and/or path of the file you wish to create. If this is
left unchanged, the results will be saved in a temporary file and a warning will
be displayed for six seconds before the file is written. This process should give
you time to cancel the process and choose a file path. Otherwise, the name of the
file is returned, so you can copy that to a file of your choice with file.copy()

overwrite logical if FALSE (default) and filename exists, then the file will not be over-
written. Set this option to TRUE to overwrite the file.

quiet logical If FALSE a message will be printed to the screen.
pop a character vector OR formula specifying the population factor. This can be used

to specify a specific subset of strata or custom population factor for the output.
Note that the allstrata command has precedence over this unless the value of
this is a new population factor.

allstrata if this is TRUE, the strata will be combined into a single population factor in the
genalex file.

geo logical Default is FALSE. If it is set to TRUE, the resulting file will have two
columns for geographic data.

geodf character Since the other slot in the adegenet object can contain many dif-
ferent items, you must specify the name of the data frame in the other slot
containing your geographic coordinates. It defaults to "xy".

sep a character specifying what character to use to separate columns. Defaults to
",".

sequence when TRUE, sequence data will be converted to integers as per the GenAlEx
specifications.

Value

The the file path or connection where the data were written.

Note

If your data set lacks a population structure, it will be coded in the new file as a single population
labeled "Pop". Likewise, if you don’t have any labels for your individuals, they will be labeled as
"ind1" through "indN", with N being the size of your population.

Author(s)

Zhian N. Kamvar

See Also

read.genalex(), clonecorrect(), genclone, genind

Examples

Not run:
data(nancycats)
genind2genalex(nancycats, "~/Documents/nancycats.csv", geo=TRUE)

End(Not run)

46 genotype_curve

genotype_curve Produce a genotype accumulation curve

Description

Genotype accumulation curves are useful for determining the minimum number of loci necessary to
discriminate between individuals in a population. This function will randomly sample loci without
replacement and count the number of multilocus genotypes observed.

Usage

genotype_curve(
gen,
sample = 100,
maxloci = 0L,
quiet = FALSE,
thresh = 1,
plot = TRUE,
drop = TRUE,
dropna = TRUE

)

Arguments

gen a genclone, genind, or loci object.

sample an integer defining the number of times loci will be resampled without replace-
ment.

maxloci the maximum number of loci to sample. By default, maxloci = 0, which indi-
cates that n - 1 loci are to be used. Note that this will always take min(n - 1,
maxloci)

quiet if FALSE (default), Progress of the iterations will be displayed. If TRUE, nothing
is printed to screen as the function runs.

thresh a number from 0 to 1. This will draw a line at that fraction of multilocus geno-
types, rounded. Defaults to 1, which will draw a line at the maximum number
of observable genotypes.

plot if TRUE (default), the genotype curve will be plotted via ggplot2. If FALSE, the
resulting matrix will be visibly returned.

drop if TRUE (default), monomorphic loci will be removed before analysis as these
loci affect the shape of the curve.

dropna if TRUE (default) and drop = TRUE, NAs will be ignored when determining if a
locus is monomorphic. When FALSE, presence of NAs will result in the locus
being retained. This argument has no effect when drop = FALSE

genotype_curve 47

Details

Internally, this function works by converting the data into a loci object, which represents genotypes
as a data frame of factors. Random samples are taken of 1 to n-1 columns of the matrix and the
number of unique rows are counted to determine the number of multilocus genotypes in that random
sample. This function does not take into account any definitions of MLGs via mlg.filter or
mll.custom.

Value

(invisibly by deafuls) a matrix of integers showing the results of each randomization. Columns
represent the number of loci sampled and rows represent an independent sample.

Author(s)

Zhian N. Kamvar

Examples

data(nancycats)
nan_geno <- genotype_curve(nancycats)
Not run:

Marker Type Comparison --
With AFLP data, it is often necessary to include more markers for resolution
data(Aeut)
Ageno <- genotype_curve(Aeut)

Many microsatellite data sets have hypervariable markers
data(microbov)
mgeno <- geotype_curve(microbov)

Adding a trendline --

Trendlines: you can add a smoothed trendline with geom_smooth()
library("ggplot2")
p <- last_plot()
p + geom_smooth()

Producing Figures for Publication ---------------------------------------

This data set has been pre filtered
data(monpop)
mongeno <- genotype_curve(monpop)

Here, we add a curve and a title for publication
p <- last_plot()
mytitle <- expression(paste("Genotype Accumulation Curve for ",

italic("M. fructicola")))
p + geom_smooth() +

theme_bw() +
theme(text = element_text(size = 12, family = "serif")) +

48 getfile

theme(title = element_text(size = 14)) +
ggtitle(mytitle)

End(Not run)

getfile Get a file name and path and store them in a list.

Description

getfile is a convenience function that serves as a wrapper for the functions file.choose(), file.path(),
and list.files(). If the user is working in a GUI environment, a window will pop up, allowing
the user to choose a specified file regardless of path.

Usage

getfile(multi = FALSE, pattern = NULL, combine = TRUE)

Arguments

multi this is an indicator to allow the user to store the names of multiple files found in
the directory. This is useful in conjunction with poppr.all().

pattern a regex() pattern for use while multi == TRUE. This will grab all files matching
this pattern.

combine logical. When this is set to TRUE (default), the $files vector will have the
path appended to them. When it is set to FALSE, it will have the basename.

Value

path a character string of the absolute path to the chosen file or files

files a character vector containing the chosen file name or names.

Author(s)

Zhian N. Kamvar

Examples

Not run:

x <- getfile()
poppr(x$files)

y <- getfile(multi=TRUE, pattern="^.+?dat$")
#useful for reading in multiple FSTAT formatted files.

yfiles <- poppr.all(y$files)

greycurve 49

End(Not run)

greycurve Display a greyscale gradient adjusted to specific parameters

Description

This function has one purpose. It is for deciding the appropriate scaling for a grey palette to be used
for edge weights of a minimum spanning network.

Usage

greycurve(
data = seq(0, 1, length = 1000),
glim = c(0, 0.8),
gadj = 3,
gweight = 1,
scalebar = FALSE

)

Arguments

data a sequence of numbers to be converted to greyscale.

glim "grey limit". Two numbers between zero and one. They determine the upper
and lower limits for the gray function. Default is 0 (black) and 0.8 (20% black).

gadj "grey adjust". a positive integer greater than zero that will serve as the expo-
nent to the edge weight to scale the grey value to represent that weight.

gweight "grey weight". an integer. If it’s 1, the grey scale will be weighted to empha-
size the differences between closely related nodes. If it is 2, the grey scale will
be weighted to emphasize the differences between more distantly related nodes.

scalebar When this is set to TRUE, two scalebars will be plotted. The purpose of this is for
adding a scale bar to minimum spanning networks produced in earlier versions
of poppr.

Value

A plot displaying a grey gradient from 0.001 to 1 with minimum and maximum values displayed as
yellow lines, and an equation for the correction displayed in red.

Author(s)

Zhian N. Kamvar

50 ia

Examples

Normal grey curve with an adjustment of 3, an upper limit of 0.8, and
weighted towards smaller values.
greycurve()
Not run:
1:1 relationship grey curve.
greycurve(gadj=1, glim=1:0)

Grey curve weighted towards larger values.
greycurve(gweight=2)

Same as the first, but the limit is 1.
greycurve(glim=1:0)

Setting the lower limit to 0.1 and weighting towards larger values.
greycurve(glim=c(0.1,0.8), gweight=2)

End(Not run)

ia Index of Association

Description

Calculate the Index of Association and Standardized Index of Association.

Usage

ia(
gid,
sample = 0,
method = 1,
quiet = FALSE,
missing = "ignore",
plot = TRUE,
hist = TRUE,
index = "rbarD",
valuereturn = FALSE

)

pair.ia(
gid,
sample = 0L,
quiet = FALSE,
plot = TRUE,
low = "blue",
high = "red",
limits = NULL,

ia 51

index = "rbarD",
method = 1L

)

resample.ia(gid, n = NULL, reps = 999, quiet = FALSE, use_psex = FALSE, ...)

jack.ia(gid, n = NULL, reps = 999, quiet = FALSE)

Arguments

gid a adegenet::genind() or genclone() object.

sample an integer indicating the number of permutations desired (eg 999).

method an integer from 1 to 4 indicating the sampling method desired. see shufflepop()
for details.

quiet Should the function print anything to the screen while it is performing calcula-
tions? TRUE prints nothing. FALSE (default) will print the population name and
progress bar.

missing a character string. see missingno() for details.

plot When TRUE (default), a heatmap of the values per locus pair will be plotted
(for pair.ia()). When sampling > 0, different things happen with ia() and
pair.ia(). For ia(), a histogram for the data set is plotted. For pair.ia(),
p-values are added as text on the heatmap.

hist logical Deprecated. Use plot.

index character either "Ia" or "rbarD". If hist = TRUE, this indicates which index
you want represented in the plot (default: "rbarD").

valuereturn logical if TRUE, the index values from the reshuffled data is returned. If FALSE
(default), the index is returned with associated p-values in a 4 element numeric
vector.

low (for pair.ia) a color to use for low values when ‘plot = TRUE‘

high (for pair.ia) a color to use for low values when ‘plot = TRUE‘

limits (for pair.ia) the limits to be used for the color scale. Defaults to ‘NULL‘. If you
want to use a custom range, supply two numbers between -1 and 1, (e.g. ‘limits
= c(-0.15, 1)‘)

n an integer specifying the number of samples to be drawn. Defaults to NULL,
which then uses the number of multilocus genotypes.

reps an integer specifying the number of replicates to perform. Defaults to 999.

use_psex a logical. If TRUE, the samples will be weighted by the value of psex. Defaults
to FALSE.

... arguments passed on to psex

Details

• ia() calculates the index of association over all loci in the data set.

• pair.ia() calculates the index of association in a pairwise manner among all loci.

52 ia

• resample.ia() calculates the index of association on a reduced data set multiple times to cre-
ate a distribution, showing the variation of values observed at a given sample size (previously
jack.ia()).

The index of association was originally developed by A.H.D. Brown analyzing population structure
of wild barley (Brown, 1980). It has been widely used as a tool to detect clonal reproduction
within populations . Populations whose members are undergoing sexual reproduction, whether it be
selfing or out-crossing, will produce gametes via meiosis, and thus have a chance to shuffle alleles
in the next generation. Populations whose members are undergoing clonal reproduction, however,
generally do so via mitosis. This means that the most likely mechanism for a change in genotype
is via mutation. The rate of mutation varies from species to species, but it is rarely sufficiently
high to approximate a random shuffling of alleles. The index of association is a calculation based
on the ratio of the variance of the raw number of differences between individuals and the sum of
those variances over each locus . You can also think of it as the observed variance over the expected
variance. If they are the same, then the index is zero after subtracting one (from Maynard-Smith,
1993):

IA =
VO

VE
− 1

Since the distance is more or less a binary distance, any sort of marker can be used for this analysis.
In the calculation, phase is not considered, and any difference increases the distance between two
individuals. Remember that each column represents a different allele and that each entry in the table
represents the fraction of the genotype made up by that allele at that locus. Notice also that the sum
of the rows all equal one. Poppr uses this to calculate distances by simply taking the sum of the
absolute values of the differences between rows.

The calculation for the distance between two individuals at a single locus with a allelic states and a
ploidy of k is as follows (except for Presence/Absence data):

d =
k

2

a∑
i=1

| Ai −Bi |

To find the total number of differences between two individuals over all loci, you just take d over m
loci, a value we’ll call D:

D =
m∑
i=1

di

These values are calculated over all possible combinations of individuals in the data set,
(
n
2

)
after

which you end up with
(
n
2

)
·m values of d and

(
n
2

)
values of D. Calculating the observed variances

is fairly straightforward (modified from Agapow and Burt, 2001):

VO =

(n2)∑
i=1

D2
i −

(

(n2)∑
i=1

Di)
2

(
n
2

)(
n
2

)
Calculating the expected variance is the sum of each of the variances of the individual loci. The
calculation at a single locus, j is the same as the previous equation, substituting values of D for d:

ia 53

varj =

(n2)∑
i=1

d2i −
(

(n2)∑
i=1

di)
2

(
n
2

)(
n
2

)
The expected variance is then the sum of all the variances over all m loci:

VE =

m∑
j=1

varj

Agapow and Burt showed that IA increases steadily with the number of loci, so they came up with
an approximation that is widely used, r̄d. For the derivation, see the manual for multilocus.

r̄d =
VO − VE

2

m∑
j=1

m∑
k ̸=j

√
varj · vark

Value

for pair.ia():
A matrix with two columns and choose(nLoc(gid), 2) rows representing the values for Ia and
rbarD per locus pair.

If no sampling has occurred::
A named number vector of length 2 giving the Index of Association, "Ia"; and the Standardized
Index of Association, "rbarD"

If there is sampling::
A a named numeric vector of length 4 with the following values:

• Ia - numeric. The index of association.
• p.Ia - A number indicating the p-value resulting from a one-sided permutation test based on

the number of samples indicated in the original call.
• rbarD - numeric. The standardized index of association.
• p.rD - A factor indicating the p-value resulting from a one-sided permutation test based on

the number of samples indicated in the original call.

If there is sampling and valureturn = TRUE:
A list with the following elements:

• index The above vector
• samples A data frame with s by 2 column data frame where s is the number of samples

defined. The columns are for the values of Ia and rbarD, respectively.

resample.ia(): a data frame with the index of association and standardized index of association
in columns. Number of rows represents the number of reps.

54 ia

Note

jack.ia() is deprecated as the name was misleading. Please use resample.ia()

Author(s)

Zhian N. Kamvar

References

Paul-Michael Agapow and Austin Burt. Indices of multilocus linkage disequilibrium. Molecular
Ecology Notes, 1(1-2):101-102, 2001

A.H.D. Brown, M.W. Feldman, and E. Nevo. Multilocus structure of natural populations of Hordeum
spontaneum. Genetics, 96(2):523-536, 1980.

J M Smith, N H Smith, M O’Rourke, and B G Spratt. How clonal are bacteria? Proceedings of the
National Academy of Sciences, 90(10):4384-4388, 1993.

See Also

poppr(), missingno(), import2genind(), read.genalex(), clonecorrect(), win.ia(), samp.ia()

Examples

data(nancycats)
ia(nancycats)

Pairwise over all loci:
data(partial_clone)
res <- pair.ia(partial_clone)
plot(res, low = "black", high = "green", index = "Ia")

Resampling
data(Pinf)
resample.ia(Pinf, reps = 99)

Not run:

Pairwise IA with p-values (this will take about a minute)
res <- pair.ia(partial_clone, sample = 999)
head(res)

Plot the results of resampling rbarD.
library("ggplot2")
Pinf.resamp <- resample.ia(Pinf, reps = 999)
ggplot(Pinf.resamp[2], aes(x = rbarD)) +

geom_histogram() +
geom_vline(xintercept = ia(Pinf)[2]) +
geom_vline(xintercept = ia(clonecorrect(Pinf))[2], linetype = 2) +
xlab(expression(bar(r)[d]))

Get the indices back and plot the distributions.
nansamp <- ia(nancycats, sample = 999, valuereturn = TRUE)

imsn 55

plot(nansamp, index = "Ia")
plot(nansamp, index = "rbarD")

You can also adjust the parameters for how large to display the text
so that it's easier to export it for publication/presentations.
library("ggplot2")
plot(nansamp, labsize = 5, linesize = 2) +

theme_bw() + # adding a theme
theme(text = element_text(size = rel(5))) + # changing text size
theme(plot.title = element_text(size = rel(4))) + # changing title size
ggtitle("Index of Association of nancycats") # adding a new title

Get the index for each population.
lapply(seppop(nancycats), ia)
With sampling
lapply(seppop(nancycats), ia, sample = 999)

Plot pairwise ia for all populations in a grid with cowplot
Set up the library and data
library("cowplot")
data(monpop)
splitStrata(monpop) <- ~Tree/Year/Symptom
setPop(monpop) <- ~Tree

Need to set up a list in which to store the plots.
plotlist <- vector(mode = "list", length = nPop(monpop))
names(plotlist) <- popNames(monpop)

Loop throgh the populations, calculate pairwise ia, plot, and then
capture the plot in the list
for (i in popNames(monpop)){

x <- pair.ia(monpop[pop = i], limits = c(-0.15, 1)) # subset, calculate, and plot
plotlist[[i]] <- ggplot2::last_plot() # save the last plot

}

Use the plot_grid function to plot.
plot_grid(plotlist = plotlist, labels = paste("Tree", popNames(monpop)))

End(Not run)

imsn Create minimum spanning networks interactively

Description

This function will launch an interactive interface that allows you to create, plot, manipulate, and
save minimum spanning networks. It runs using the shiny R package.

56 imsn

Usage

imsn()

Details

Creating and plotting MSNs requires three steps:

1. Create a distance matrix from your data

2. Create a minimum spanning network with your data and the matrix

3. Visualize the minimum spanning network

The function plot_poppr_msn is currently the most flexible way of visualizing your minimum
spanning network, but with 20 parameters, it can become pretty intimidating trying to find the right
display for your MSN.

With this function, all three steps are combined into one interactive interface that will allow you to
intuitively modify your minimum spanning network and even save the results to a pdf or png file.

Value

NULL, invisibly

Interface

Buttons: In the left hand panel, there are three buttons to execute the functions. These allow you
to run the data set after you manipulate all of the parameters.

• GO! - This button will start the application with the specified parameters
• reData - Use this button when you have changed any parameters under the section Data

Parameters. This involves recalculating the distance matrix and msn.
• reGraph - Use this button when you have changed any parameters under the section Graph-

ical Parameters. This involves superficial changes to the display of the minimum spanning
network.

Tabs:
The right hand panel contains different tabs related to your data set of choice.

• Plot - The minimum spanning network itself
• Data - A display of your data set
• Command - The commands used to create the plot. You can copy and paste this to an R file

for reproducibility.
• Save Plot - This provides a tool for you to save the plot to a PDF or PNG image.
• Session Information - displays the result of sessionInfo for reproducibility.

Author(s)

Zhian N. Kamvar

See Also

plot_poppr_msn diss.dist bruvo.dist bruvo.msn poppr.msn nei.dist popsub missingno

incomp 57

Examples

Not run:

Set up some data
library("poppr")
library("magrittr")
data(monpop)
splitStrata(monpop) <- ~Tree/Year/Symptom
summary(monpop)
monpop_ssr <- c(CHMFc4 = 7, CHMFc5 = 2, CHMFc12 = 4,

SEA = 4, SED = 4, SEE = 2, SEG = 6,
SEI = 3, SEL = 4, SEN = 2, SEP = 4,
SEQ = 2, SER = 4)

t26 <- monpop %>% setPop(~Tree) %>% popsub("26") %>% setPop(~Year/Symptom)
t26
if (interactive()) {

imsn() # select Bruvo's distance and enter "monpop_ssr" into the Repeat Length field.

It is also possible to run this from github if you are connected to the internet.
This allows you to access any bug fixes that may have been updated before a formal
release on CRAN

shiny::runGitHub("grunwaldlab/poppr", subdir = "inst/shiny/msn_explorer")

You can also use your own distance matrices, but there's a small catch.
in order to do so, you must write a function that will subset the matrix
to whatever populations are in your data. Here's an example with the above

mondist <- bruvo.dist(monpop, replen = monpop_ssr)
myDist <- function(x, d = mondist){
dm <- as.matrix(d) # Convert the dist object to a square matrix
xi <- indNames(x) # Grab the sample names that exist
return(as.dist(dm[xi, xi])) # return only the elements that have the names

in the data set
}
After executing imsn, choose:
Distance: custom
myDist
imsn()

}

End(Not run)

incomp Check for samples that are incomparable due to missing data

Description

If two samples share no loci typed in common, they are incomparable and will produce missing
data in a distance matrix, which could lead to problems with further analyses. This function finds
these samples and returns a matrix of how many other samples these are incomparable with.

58 informloci

Usage

incomp(gid)

Arguments

gid a genind or genclone object

Value

a square matrix with samples that are incomparable

Examples

data(nancycats)
These two populations have no samples that are incomparable
incomp(nancycats[pop = c(1, 17)])

If you reduce the number of loci, we find that there are
incomparable samples.
incomp(nancycats[pop = c(1, 17), loc = c(1, 4)])

informloci Remove all non-phylogentically informative loci

Description

This function will facilitate in removing phylogenetically uninformative loci from a genclone or
genind object. The user has the ability to define what uninformative means by setting a cutoff value
for either percentage of differentiating genotypes or minor allele frequency.

Usage

informloci(pop, cutoff = 2/nInd(pop), MAF = 0.01, quiet = FALSE)

Arguments

pop a genclone or genind object.

cutoff numeric. A number from 0 to 1 defining the minimum number of differentiating
samples.

MAF numeric. A number from 0 to 1 defining the minimum minor allele frequency.
This is passed as the thresh parameter of isPoly.

quiet logical. When quiet = TRUE (default), messages indicating the loci removed
will be printed to screen. When quiet = FALSE, nothing will be printed to
screen.

informloci 59

Details

This function will remove uninformative loci using a traditional MAF cutoff (using isPoly from
adegenet) as well as analyzing the number of observed genotypes in a locus. This is important for
clonal organisms that can have fixed heterozygous sites not detected by MAF methods.

Value

A genind object with user-defined informative loci.

Note

This will have a few side effects that affect certain analyses. First, the number of multilocus geno-
types might be reduced due to the reduced number of markers (if you are only using a genind
object). Second, if you plan on using this data for analysis of the index of association, be sure to
use the standardized version (rbarD) that corrects for the number of observed loci.

Author(s)

Zhian N. Kamvar

Examples

We will use a dummy data set to demonstrate how this detects uninformative
loci using both MAF and a cutoff.

genos <- c("A/A", "A/B", "A/C", "B/B", "B/C", "C/C")

v <- sample(genos, 100, replace = TRUE)
w <- c(rep(genos[2], 99), genos[3]) # found by cutoff
x <- c(rep(genos[1], 98), genos[3], genos[2]) # found by MAF
y <- c(rep(genos[1], 99), genos[2]) # found by both
z <- sample(genos, 100, replace = TRUE)
dat <- df2genind(data.frame(v = v, w = w, x = x, y = y, z = z), sep = "/")

informloci(dat)

Not run:
Ignore MAF
informloci(dat, MAF = 0)

Ignore cutoff
informloci(dat, cutoff = 0)

Real data
data(H3N2)
informloci(H3N2)

End(Not run)

60 info_table

info_table Create a table summarizing missing data or ploidy information of a
genind or genclone object

Description

Create a table summarizing missing data or ploidy information of a genind or genclone object

Usage

info_table(
gen,
type = c("missing", "ploidy"),
percent = TRUE,
plot = FALSE,
df = FALSE,
returnplot = FALSE,
low = "blue",
high = "red",
plotlab = TRUE,
scaled = TRUE

)

Arguments

gen a genind or genclone object.
type character. What information should be returned. Choices are "missing" (De-

fault) and "ploidy". See Description.
percent logical. (ONLY FOR type = 'missing') If TRUE (default), table and plot will

represent missing data as a percentage of each cell. If FALSE, the table and plot
will represent missing data as raw counts. (See details)

plot logical. If TRUE, a simple heatmap will be produced. If FALSE (default), no
heatmap will be produced.

df logical. If TRUE, the data will be returned as a long form data frame. If FALSE
(default), a matrix with samples in rows and loci in columns will be returned.

returnplot logical. If TRUE, a list is returned with two elements: table - the normal
output and plot - the ggplot object. If FALSE, the table is returned.

low character. What color should represent no missing data or lowest observed
ploidy? (default: "blue")

high character. What color should represent the highest amount of missing data or
observed ploidy? (default: "red")

plotlab logical. (ONLY FOR type = 'missing') If TRUE (default), values of missing
data greater than 0% will be plotted. If FALSE, the plot will appear un-appended.

scaled logical. (ONLY FOR type = 'missing') This is for when percent = TRUE.
If TRUE (default), the color specified in high will represent the highest observed
value of missing data. If FALSE, the color specified in high will represent 100%.

is.snpclone 61

Details

Missing data is accounted for on a per-population level.
Ploidy is accounted for on a per-individual level.

For type = ’missing’: This data is potentially useful for identifying areas of systematic missing
data. There are a few caveats to be aware of.

• Regarding counts of missing data: Each count represents the number of individuals with
missing data at each locus. The last column, "mean" can be thought of as the average number
of individuals with missing data per locus.

• Regarding percentage missing data: This percentage is relative to the population and
locus, not to the entire data set. The last column, "mean" represents the average percent of
the population with missing data per locus.

For type = ’ploidy’: This option is useful for data that has been imported with mixed ploidies.
It will summarize the relative levels of ploidy per individual per locus. This is simply based off
of observed alleles and does not provide any further estimates.

Value

a matrix, data frame (df = TRUE), or a list (returnplot = TRUE) representing missing data per pop-
ulation (type = 'missing') or ploidy per individual (type = 'ploidy') in a genind or genclone
object.

Author(s)

Zhian N. Kamvar

Examples

data(nancycats)
nancy.miss <- info_table(nancycats, plot = TRUE, type = "missing")
data(Pinf)
Pinf.ploid <- info_table(Pinf, plot = TRUE, type = "ploidy")

is.snpclone Check for validity of a genclone or snpclone object

Description

Check for validity of a genclone or snpclone object

Usage

is.snpclone(x)

is.clone(x)

is.genclone(x)

62 locus_table

Arguments

x a genclone or snpclone object

Note

a genclone object will always be a valid genind object and a snpclone object will always be a valid
genlight object.

Author(s)

Zhian N. Kamvar

Examples

(sc <- as.snpclone(glSim(100, 1e3, ploid=2, parallel = FALSE),
parallel = FALSE, n.cores = 1L))

is.snpclone(sc)
is.clone(sc)
data(nancycats)
nanclone <- as.genclone(nancycats)
is.genclone(nanclone)

locus_table Create a table of summary statistics per locus.

Description

Create a table of summary statistics per locus.

Usage

locus_table(
x,
index = "simpson",
lev = "allele",
population = "ALL",
information = TRUE

)

Arguments

x a adegenet::genind or genclone object.

index Which diversity index to use. Choices are

• "simpson" (Default) to give Simpson’s index
• "shannon" to give the Shannon-Wiener index
• "invsimpson" to give the Inverse Simpson’s index aka the Stoddard and

Tayor index.

locus_table 63

lev At what level do you want to analyze diversity? Choices are "allele" (Default)
or "genotype".

population Select the populations to be analyzed. This is the parameter sublist passed on
to the function popsub(). Defaults to "ALL".

information When TRUE (Default), this will print out a header of information to the R console.

Value

a table with 4 columns indicating the Number of alleles/genotypes observed, Diversity index chosen,
Nei’s 1978 gene diversity (expected heterozygosity), and Evenness.

Note

The calculation of Hexp is (n
n−1)1−

∑k
i=1 p

2
i where p is the allele frequencies at a given locus and n

is the number of observed alleles (Nei, 1978) in each locus and then returning the average. Caution
should be exercised in interpreting the results of Hexp with polyploid organisms with ambiguous
ploidy. The lack of allelic dosage information will cause rare alleles to be over-represented and
artificially inflate the index. This is especially true with small sample sizes.

If lev = "genotype", then all statistics reflect genotypic diversity within each locus. This includes
the calculation for Hexp, which turns into the unbiased Simpson’s index.

Author(s)

Zhian N. Kamvar

References

Jari Oksanen, F. Guillaume Blanchet, Roeland Kindt, Pierre Legendre, Peter R. Minchin, R. B.
O’Hara, Gavin L. Simpson, Peter Solymos, M. Henry H. Stevens, and Helene Wagner. vegan:
Community Ecology Package, 2012. R package version 2.0-5.

Niklaus J. Gr\"unwald, Stephen B. Goodwin, Michael G. Milgroom, and William E. Fry. Analysis
of genotypic diversity data for populations of microorganisms. Phytopathology, 93(6):738-46, 2003

J.A. Ludwig and J.F. Reynolds. Statistical Ecology. A Primer on Methods and Computing. New
York USA: John Wiley and Sons, 1988.

E.C. Pielou. Ecological Diversity. Wiley, 1975.

J.A. Stoddart and J.F. Taylor. Genotypic diversity: estimation and prediction in samples. Genetics,
118(4):705-11, 1988.

Masatoshi Nei. Estimation of average heterozygosity and genetic distance from a small number of
individuals. Genetics, 89(3):583-590, 1978.

Claude Elwood Shannon. A mathematical theory of communication. Bell Systems Technical Jour-
nal, 27:379-423,623-656, 1948

See Also

vegan::diversity(), poppr()

64 make_haplotypes

Examples

data(nancycats)
locus_table(nancycats[pop = 5])
Not run:
Analyze locus statistics for the North American population of P. infestans.
Note that due to the unknown dosage of alleles, many of these statistics
will be artificially inflated for polyploids.
data(Pinf)
locus_table(Pinf, population = "North America")

End(Not run)

make_haplotypes Split samples from a genind object into pseudo-haplotypes

Description

Split samples from a genind object into pseudo-haplotypes

Usage

make_haplotypes(gid)

Arguments

gid a genind or genlight object.

Details

Certain analyses, such as amova work best if within-sample variance (error) can be estimated. Prac-
tically, this is performed by splitting the genotypes across all loci to create multiple haplotypes. This
way, the within-sample distance can be calculated and incorporated into the model. Please note that
the haplotypes generated are based on the order of the unphased alleles in the genind object and do
not represent true haplotypes.

Haploid data will be returned un-touched.

Value

a haploid genind object with an extra strata column called "Individual".

Note

The other slot will not be copied over to the new genind object.

See Also

poppr.amova() pegas::amova() as.genambig()

missingno 65

Examples

Diploid data is doubled ---

data(nancycats)
nan9 <- nancycats[pop = 9]
nan9hap <- make_haplotypes(nan9)
nan9 # 9 individuals from population 9
nan9hap # 18 haplotypes
strata(nan9hap) # strata gains a new column: Individual
indNames(nan9hap) # individuals are renamed sequentially

Mix ploidy data can be split, but should be treated with caution --------
#
For example, the Pinf data set contains 86 tetraploid individuals,
but there appear to only be diploids and triploid genotypes. When
we convert to haplotypes, those with all missing data are dropped.
data(Pinf)
Pinf
pmiss <- info_table(Pinf, type = "ploidy", plot = TRUE)

No samples appear to be triploid across all loci. This will cause
several haplotypes to have a lot of missing data.
p_haps <- make_haplotypes(Pinf)
p_haps
head(genind2df(p_haps), n = 20)

missingno Treat missing data

Description

missingno gives the user four options to deal with missing data: remove loci, remove samples,
replace with zeroes, or replace with average allele counts.

Usage

missingno(pop, type = "loci", cutoff = 0.05, quiet = FALSE, freq = FALSE)

Arguments

pop a genclone or genind object.

type a character string: can be "ignore", "zero", "mean", "loci", or "geno" (see
Details for definitions).

cutoff numeric. A number from 0 to 1 indicating the allowable rate of missing data
in either genotypes or loci. This will be ignored for type values of "mean" or
"zero".

quiet if TRUE, it will print to the screen the action performed.

66 missingno

freq defaults to FALSE. This option is passed on to the tab function. If TRUE, the
matrix in the genind object will be replaced by a numeric matrix (as opposed
to integer). THIS IS NOT RECOMMENDED. USE THE FUNCTION tab in-
stead.

Details

These methods provide a way to deal with systematic missing data and to give a wrapper for
adegenet’s tab function. ALL OF THESE ARE TO BE USED WITH CAUTION.

Using this function with polyploid data (where missing data is coded as "0") may give spurious
results.

Treatment types:

• "ignore" - does not remove or replace missing data.
• "loci" - removes all loci containing missing data in the entire data set.
• "genotype" - removes any genotypes/isolates/individuals with missing data.
• "mean" - replaces all NA’s with the mean of the alleles for the entire data set.
• "zero" or "0" - replaces all NA’s with "0". Introduces more diversity.

Value

a genclone or genind object.

Note

"wild missingno appeared!"

Author(s)

Zhian N. Kamvar

See Also

tab, poppr, poppr.amova, nei.dist, aboot

Examples

data(nancycats)

nancy.locina <- missingno(nancycats, type = "loci")

Found 617 missing values.
2 loci contained missing values greater than 5%.
Removing 2 loci : fca8 fca45

nancy.genona <- missingno(nancycats, type = "geno")

Found 617 missing values.
38 genotypes contained missing values greater than 5%.
Removing 38 genotypes : N215 N216 N188 N189 N190 N191 N192 N302 N304 N310

mlg 67

N195 N197 N198 N199 N200 N201 N206 N182 N184 N186 N298 N299 N300 N301 N303
N282 N283 N288 N291 N292 N293 N294 N295 N296 N297 N281 N289 N290

Replacing all NA with "0" (see tab in the adegenet package).
nancy.0 <- missingno(nancycats, type = "0")

Replaced 617 missing values

Replacing all NA with the mean of each column (see tab in the
adegenet package).
nancy.mean <- missingno(nancycats, type = "mean")

Replaced 617 missing values

mlg Create counts, vectors, and matrices of multilocus genotypes.

Description

Create counts, vectors, and matrices of multilocus genotypes.

Usage

mlg(gid, quiet = FALSE)

mlg.table(
gid,
strata = NULL,
sublist = "ALL",
exclude = NULL,
blacklist = NULL,
mlgsub = NULL,
bar = TRUE,
plot = TRUE,
total = FALSE,
color = FALSE,
background = FALSE,
quiet = FALSE

)

mlg.vector(gid, reset = FALSE)

mlg.crosspop(
gid,
strata = NULL,
sublist = "ALL",
exclude = NULL,
blacklist = NULL,

68 mlg

mlgsub = NULL,
indexreturn = FALSE,
df = FALSE,
quiet = FALSE

)

mlg.id(gid)

Arguments

gid a adegenet::genind, genclone, adegenet::genlight, or snpclone object.
quiet Logical. If FALSE, progress of functions will be printed to the screen.
strata a formula specifying the strata at which computation is to be performed.
sublist a vector of population names or indices that the user wishes to keep. Default

to "ALL".
exclude a vector of population names or indexes that the user wishes to discard. Default

to NULL.
blacklist DEPRECATED, use exclude.
mlgsub a vector of multilocus genotype indices with which to subset mlg.table and

mlg.crosspop. NOTE: The resulting table from mlg.table will only contain
countries with those MLGs

bar deprecated. Same as plot. Retained for compatibility.
plot logical If TRUE, a bar graph for each population will be displayed showing the

relative abundance of each MLG within the population.
total logical If TRUE, a row containing the sum of all represented MLGs is appended

to the matrix produced by mlg.table.
color an option to display a single barchart for mlg.table, colored by population (note,

this becomes facetted if ‘background = TRUE‘).
background an option to display the the total number of MLGs across populations per facet

in the background of the plot.
reset logical. For genclone objects, the MLGs are defined by the input data, but they

do not change if more or less information is added (i.e. loci are dropped). Setting
‘reset = TRUE‘ will recalculate MLGs. Default is ‘FALSE‘, returning the MLGs
defined in the @mlg slot.

indexreturn logical If TRUE, a vector will be returned to index the columns of mlg.table.
df logical If TRUE, return a data frame containing the counts of the MLGs and

what countries they are in. Useful for making graphs with ggplot.

Details

Multilocus genotypes are the unique combination of alleles across all loci. For details of how
these are calculated see vignette("mlg", package = "poppr"). In short, for genind and genclone
objects, they are calculated by using a rank function on strings of alleles, which is sensitive to
missing data. For genlight and snpclone objects, they are calculated with distance methods via
bitwise.dist and mlg.filter, which means that these are insensitive to missing data. Three different
types of MLGs can be defined in poppr:

mlg 69

• original the default definition of multilocus genotypes as detailed above

• contracted these are multilocus genotypes collapsed into multilocus lineages (mll) with ge-
netic distance via mlg.filter

• custom user-defined multilocus genotypes. These are useful for information such as mycelial
compatibility groups

All of the functions documented here will work on any of the MLG types defined in poppr

Value

mlg:
an integer describing the number of multilocus genotypes observed.

mlg.table:
a matrix with columns indicating unique multilocus genotypes and rows indicating populations.
This table can be used with the funciton diversity_stats to calculate the Shannon-Weaver index
(H), Stoddart and Taylor’s index (aka inverse Simpson’s index; G), Simpson’s index (lambda),
and evenness (E5).

mlg.vector:
a numeric vector naming the multilocus genotype of each individual in the dataset.

mlg.crosspop:

• default a list where each element contains a named integer vector representing the number
of individuals represented from each population in that MLG

• indexreturn = TRUE a vector of integers defining the multilocus genotypes that have indi-
viduals crossing populations

• df = TRUE A long form data frame with the columns: MLG, Population, Count. Useful for
graphing with ggplot2

mlg.id:
a list of multilocus genotypes with the associated individual names per MLG.

Note

The resulting matrix of ‘mlg.table‘ can be used for analysis with the vegan package.

mlg.vector will recalculate the mlg vector for [adegenet::genind] objects and will return the contents
of the mlg slot in [genclone][genclone-class] objects. This means that MLGs will be different for
subsetted [adegenet::genind] objects.

Author(s)

Zhian N. Kamvar

See Also

vegan::diversity() diversity_stats popsub mll mlg.filter mll.custom

70 mlg

Examples

Load the data set
data(Aeut)

Investigate the number of multilocus genotypes.
amlg <- mlg(Aeut)
amlg # 119

show the multilocus genotype vector
avec <- mlg.vector(Aeut)
avec

Get a table
atab <- mlg.table(Aeut, color = TRUE)
atab

See where multilocus genotypes cross populations
acrs <- mlg.crosspop(Aeut) # MLG.59: (2 inds) Athena Mt. Vernon

See which individuals belong to each MLG
aid <- mlg.id(Aeut)
aid["59"] # individuals 159 and 57

Not run:

For the mlg.table, you can also choose to display the number of MLGs across
populations in the background

mlg.table(Aeut, background = TRUE)
mlg.table(Aeut, background = TRUE, color = TRUE)

A simple example. 10 individuals, 5 genotypes.
mat1 <- matrix(ncol=5, 25:1)
mat1 <- rbind(mat1, mat1)
mat <- matrix(nrow=10, ncol=5, paste(mat1,mat1,sep="/"))
mat.gid <- df2genind(mat, sep="/")
mlg(mat.gid)
mlg.vector(mat.gid)
mlg.table(mat.gid)

Now for a more complicated example.
Data set of 1903 samples of the H3N2 flu virus genotyped at 125 SNP loci.
data(H3N2)
mlg(H3N2, quiet = FALSE)

H.vec <- mlg.vector(H3N2)

Changing the population vector to indicate the years of each epidemic.
pop(H3N2) <- other(H3N2)xcountry
H.tab <- mlg.table(H3N2, plot = FALSE, total = TRUE)

Show which genotypes exist accross populations in the entire dataset.

mlg.filter 71

res <- mlg.crosspop(H3N2, quiet = FALSE)

Let's say we want to visualize the multilocus genotype distribution for the
USA and Russia
mlg.table(H3N2, sublist = c("USA", "Russia"), bar=TRUE)

An exercise in subsetting the output of mlg.table and mlg.vector.
First, get the indices of each MLG duplicated across populations.
inds <- mlg.crosspop(H3N2, quiet = FALSE, indexreturn = TRUE)

Since the columns of the table from mlg.table are equal to the number of
MLGs, we can subset with just the columns.
H.sub <- H.tab[, inds]

We can also do the same by using the mlgsub flag.
H.sub <- mlg.table(H3N2, mlgsub = inds)

We can subset the original data set using the output of mlg.vector to
analyze only the MLGs that are duplicated across populations.
new.H <- H3N2[H.vec %in% inds,]

End(Not run)

mlg.filter MLG definitions based on genetic distance

Description

Multilocus genotypes are initially defined by naive string matching, but this definition does not
take into account missing data or genotyping error, casting these as unique genotypes. Defining
multilocus genotypes by genetic distance allows you to incorporate genotypes that have missing
data o genotyping error into their parent clusters.

Usage

mlg.filter(
pop,
threshold = 0,
missing = "asis",
memory = FALSE,
algorithm = "farthest_neighbor",
distance = "diss.dist",
threads = 1L,
stats = "MLGs",
...

)

mlg.filter(

72 mlg.filter

pop,
missing = "asis",
memory = FALSE,
algorithm = "farthest_neighbor",
distance = "diss.dist",
threads = 1L,
...

) <- value

Arguments

pop a genclone, snpclone, or genind object.

threshold a number indicating the minimum distance two MLGs must be separated by to
be considered different. Defaults to 0, which will reflect the original (naive)
MLG definition.

missing any method to be used by missingno: "mean", "zero", "loci", "genotype", or
"asis" (default).

memory whether this function should remember the last distance matrix it generated.
TRUE will attempt to reuse the last distance matrix if the other parameters are
the same. (default) FALSE will ignore any stored matrices and not store any it
generates.

algorithm determines the type of clustering to be done.

"farthest_neighbor" (default) merges clusters based on the maximum dis-
tance between points in either cluster. This is the strictest of the three.

"nearest_neighbor" merges clusters based on the minimum distance between
points in either cluster. This is the loosest of the three.

"average_neighbor" merges clusters based on the average distance between
every pair of points between clusters.

distance a character or function defining the distance to be applied to pop. Defaults to
diss.dist for genclone objects and bitwise.dist for snpclone objects. A
matrix or table containing distances between individuals (such as the output of
rogers.dist) is also accepted for this parameter.

threads (unused) Previously, this was the maximum number of parallel threads to be
used within this function. Default is 1 indicating that this function will run
serially. Any other number will result in a warning.

stats a character vector specifying which statistics should be returned (details below).
Choices are "MLG", "THRESHOLDS", "DISTANCES", "SIZES", or "ALL".
If choosing "ALL" or more than one, a named list will be returned.

... any parameters to be passed off to the distance method.

value the threshold at which genotypes should be collapsed.

Details

This function will take in any distance matrix or function and collapse multilocus genotypes below
a given threshold. If you use this function as the assignment method (mlg.filter(myData, distance =
myDist) <- 0.5), the distance function or matrix will be remembered by the object. This means that

mlg.filter 73

if you define your own distance matrix or function, you must keep it in memory to further utilize
mlg.filter.

Value

Default, a vector of collapsed multilocus genotypes. Otherwise, any combination of the following:

MLGs: a numeric vector defining the multilocus genotype cluster of each individual in the
dataset. Each genotype cluster is separated from every other genotype cluster by at least the
defined threshold value, as calculated by the selected algorithm.

THRESHOLDS: A numeric vector representing the thresholds beyond which clusters of multi-
locus genotypes were collapsed.

DISTANCES: A square matrix representing the distances between each cluster.

SIZES: The sizes of the multilocus genotype clusters in order.

Note

mlg.vector makes use of mlg.vector grouping prior to applying the given threshold. Geno-
type numbers returned by mlg.vector represent the lowest numbered genotype (as returned by
mlg.vector) in in each new multilocus genotype. Therefore mlg.filter and mlg.vector return
the same vector when threshold is set to 0 or less.

See Also

filter_stats, cutoff_predictor, mll, genclone, snpclone, diss.dist, bruvo.dist

Examples

data(partial_clone)
pc <- as.genclone(partial_clone, threads = 1L) # convert to genclone object

Basic Use ---

Show MLGs at threshold 0.05
mlg.filter(pc, threshold = 0.05, distance = "nei.dist", threads = 1L)
pc # 26 mlgs

Set MLGs at threshold 0.05
mlg.filter(pc, distance = "nei.dist", threads = 1L) <- 0.05
pc # 25 mlgs

Not run:

The distance definition is persistant
mlg.filter(pc) <- 0.1
pc # 24 mlgs

But you can still change the definition

74 mlg.filter

mlg.filter(pc, distance = "diss.dist", percent = TRUE) <- 0.1
pc

Choosing a threshold --

Thresholds for collapsing multilocus genotypes should not be arbitrary. It
is important to consider what threshold is suitable. One method of choosing
a threshold is to find a gap in the distance distribution that represents
clonal groups. You can look at this by analyzing the distribution of all
possible thresholds with the function "cutoff_predictor".

For this example, we'll use Bruvo's distance to predict the cutoff for
P. infestans.

data(Pinf)
Pinf
Repeat lengths are necessary for Bruvo's distance
(pinfreps <- fix_replen(Pinf, c(2, 2, 6, 2, 2, 2, 2, 2, 3, 3, 2)))

Now we can collect information of the thresholds. We can set threshold = 1
because we know that this will capture the maximum possible distance:
(thresholds <- mlg.filter(Pinf, distance = bruvo.dist, stats = "THRESHOLDS",

replen = pinfreps, threshold = 1))
We can use these thresholds to find an appropriate cutoff
(pcut <- cutoff_predictor(thresholds))
mlg.filter(Pinf, distance = bruvo.dist, replen = pinfreps) <- pcut
Pinf

This can also be visualized with the "filter_stats" function.

Special case: threshold = 0 ---

It's important to remember that a threshold of 0 is equal to the original
MLG definition. This example will show a data set that contains genotypes
with missing data that share all alleles with other genotypes except for
the missing one.

data(monpop)
monpop # 264 mlg
mlg.filter(monpop) <- 0
nmll(monpop) # 264 mlg

In order to merge these genotypes with missing data, we should set the
threshold to be slightly higher than 0. We will use the smallest fraction
the computer can store.

mlg.filter(monpop) <- .Machine$double.eps ^ 0.5
nmll(monpop) # 236 mlg

Custom distance ---

mll 75

Custom genetic distances can be used either in functions from other
packages or user-defined functions

data(Pinf)
Pinf
mlg.filter(Pinf, distance = function(x) dist(tab(x))) <- 3
Pinf
mlg.filter(Pinf) <- 4
Pinf

genlight / snpclone objects ---

set.seed(999)
gc <- as.snpclone(glSim(100, 0, n.snp.struc = 1e3, ploidy = 2))
gc # 100 mlgs
mlg.filter(gc) <- 0.25
gc # 82 mlgs

End(Not run)

mll Access and manipulate multilocus lineages.

Description

The following methods allow the user to access and manipulate multilocus lineages in genclone or
snpclone objects.

Usage

mll(x, type = NULL)

nmll(x, type = NULL)

mll(x) <- value

Arguments

x a genclone or snpclone object.

type a character specifying "original", "contracted", or "custom" defining they type
of mlgs to return. Defaults to what is set in the object.

value a character specifying which mlg type is visible in the object. See details.

76 mll.custom

Details

genclone and snpclone objects have a slot for an internal class of object called MLG. This class
allows the storage of flexible mll definitions:

• "original" - naive mlgs defined by string comparison. This is default.

• "contracted" - mlgs defined by a genetic distance threshold.

• "custom" - user-defined MLGs

Value

an object of the same type as x.

Author(s)

Zhian N. Kamvar

See Also

mll.custom mlg.table

Examples

data(partial_clone)
pc <- as.genclone(partial_clone)
mll(pc)
mll(pc) <- "custom"
mll(pc)
mll.levels(pc) <- LETTERS
mll(pc)

mll.custom Define custom multilocus lineages

Description

This function will allow you to define custom multilocus lineages for your data set.

Usage

mll.custom(x, set = TRUE, value)

mll.custom(x, set = TRUE) <- value

mll.levels(x, set = TRUE, value)

mll.levels(x, set = TRUE) <- value

mll.reset 77

Arguments

x a genclone or snpclone object.

set logical. If TRUE (default), the visible mlls will be set to ’custom’.

value a vector that defines the multilocus lineages for your data. This can be a vector
of ANYTHING that can be turned into a factor.

Value

an object of the same type as x

Author(s)

Zhian N. Kamvar

See Also

mll mlg.table

Examples

data(partial_clone)
pc <- as.genclone(partial_clone)
mll.custom(pc) <- LETTERS[mll(pc)]
mll(pc)

Let's say we had a mistake and the A mlg was actually B.
mll.levels(pc)[mll.levels(pc) == "A"] <- "B"
mll(pc)

Set the MLL back to the original definition.
mll(pc) <- "original"
mll(pc)

mll.reset Reset multilocus lineages

Description

This function will allow you to reset multilocus lineages for your data set.

Usage

mll.reset(x, value)

Arguments

x a genclone or snpclone object.

value a character vector that specifies which levels you wish to be reset.

78 mll.reset

Value

an object of the same type as x

Note

This method has no assignment method. If "original" is not contained in "value", it is assumed that
the "original" definition will be used to reset the MLGs.

Author(s)

Zhian N. Kamvar

See Also

mll mlg.table mll.custom

Examples

This data set was a subset of a larger data set, so the multilocus
genotypes are not all sequential
data(Pinf)
mll(Pinf) <- "original"
mll(Pinf)

If we use mll.reset, then it will become sequential
Pinf.new <- mll.reset(Pinf, TRUE) # reset all
mll(Pinf.new)

Not run:

It is possible to reset only specific mll definitions. For example, let's
say that we wanted to filter our multilocus genotypes by nei's distance
mlg.filter(Pinf, dist = nei.dist, missing = "mean") <- 0.02

And we wanted to set those as custom genotypes,
mll.custom(Pinf) <- mll(Pinf, "contracted")
mll.levels(Pinf) <- .genlab("MLG", nmll(Pinf, "custom"))

We could reset just the original and the filtered if we wanted to and keep
the custom as it were.

Pinf.new <- mll.reset(Pinf, c("original", "contracted"))

mll(Pinf.new, "original")
mll(Pinf.new, "contracted")
mll(Pinf.new, "custom")

If "original" is not one of the values, then that is used as a baseline.
Pinf.orig <- mll.reset(Pinf, "contracted")
mll(Pinf.orig, "contracted")
mll(Pinf.new, "contracted")

monpop 79

End(Not run)

monpop Peach brown rot pathogen *Monilinia fructicola*

Description

This is microsatellite data for a population of the haploid plant pathogen *Monilinia fructicola* that
causes disease within peach tree canopies (Everhart & Scherm, 2014). Entire populations within
trees were sampled across 3 years (2009, 2010, and 2011) in a total of four trees, where one tree
was sampled in all three years, for a total of 6 within-tree populations. Within each year, samples
in the spring were taken from affected blossoms (termed "BB" for blossom blight) and in late
summer from affected fruits (termed "FR" for fruit rot). There are a total of 694 isolates with 65 to
173 isolates within each canopy population that were characterized using a set of 13 microsatellite
markers.

Usage

data(monpop)

Format

a [genclone-class] object with 3 hierarchical levels coded into one population factor. These are
named "Tree", "Year", and "Symptom"

References

SE Everhart, H Scherm, (2015) Fine-scale genetic structure of *Monilinia fructicola* during brown
rot epidemics within individual peach tree canopies. Phytopathology 105:542-549 doi: doi:10.1094/
PHYTO03140088R

Examples

data(monpop)
splitStrata(monpop) <- ~Tree/Year/Symptom
setPop(monpop) <- ~Symptom/Year
monpop

https://doi.org/10.1094/PHYTO-03-14-0088-R
https://doi.org/10.1094/PHYTO-03-14-0088-R

80 nei.dist

nei.dist Calculate Genetic Distance for a genind or genclone object.

Description

These functions are modified from the function dist.genpop to be applicable for distances between
individuals.

Usage

nei.dist(x, warning = TRUE)

edwards.dist(x)

rogers.dist(x)

reynolds.dist(x)

provesti.dist(x)

prevosti.dist

Arguments

x a genind, genclone, or matrix object.

warning If TRUE, a warning will be printed if any infinite values are detected and replaced.
If FALSE, these values will be replaced without warning. See Details below.

Format

An object of class function of length 1.

Details

It is important to be careful with the interpretation of these distances as they were originally intended
for calculation of between-population distance. As Nei’s distance is the negative log of 0:1, this
means that it is very possible to obtain distances of infinity. When this happens, infinite values are
corrected to be 10 * max(D) where D is the distance matrix without infinite values.

Value

an object of class dist with the same number of observations as the number of individuals in your
data.

nei.dist 81

Note

Prevosti’s distance is identical to diss.dist, except that diss.dist is optimized for a larger num-
ber of individuals (n > 125) at the cost of required memory. Both prevosti.dist and provesti.dist
are the same function, provesti.dist is a spelling error and exists for backwards compatibility.

These distances were adapted from the adegenet function dist.genpop to work with genind ob-
jects.

Author(s)

Zhian N. Kamvar (poppr adaptation) Thibaut Jombart (adegenet adaptation) Daniel Chessel (ade4)

References

Nei, M. (1972) Genetic distances between populations. American Naturalist, 106, 283-292.

Nei M. (1978) Estimation of average heterozygosity and genetic distance from a small number of
individuals. Genetics, 23, 341-369.

Avise, J. C. (1994) Molecular markers, natural history and evolution. Chapman & Hall, London.

Edwards, A.W.F. (1971) Distance between populations on the basis of gene frequencies. Biomet-
rics, 27, 873-881.

Cavalli-Sforza L.L. and Edwards A.W.F. (1967) Phylogenetic analysis: models and estimation pro-
cedures. Evolution, 32, 550-570.

Hartl, D.L. and Clark, A.G. (1989) Principles of population genetics. Sinauer Associates, Sunder-
land, Massachussetts (p. 303).

Reynolds, J. B., B. S. Weir, and C. C. Cockerham. (1983) Estimation of the coancestry coefficient:
basis for a short-term genetic distance. Genetics, 105, 767-779.

Rogers, J.S. (1972) Measures of genetic similarity and genetic distances. Studies in Genetics, Univ.
Texas Publ., 7213, 145-153.

Avise, J. C. (1994) Molecular markers, natural history and evolution. Chapman & Hall, London.

Prevosti A. (1974) La distancia genetica entre poblaciones. Miscellanea Alcobe, 68, 109-118.

Prevosti A., Ocana J. and Alonso G. (1975) Distances between populations of Drosophila sub-
obscura, based on chromosome arrangements frequencies. Theoretical and Applied Genetics, 45,
231-241.

For more information on dissimilarity indexes:

Gower J. and Legendre P. (1986) Metric and Euclidean properties of dissimilarity coefficients. Jour-
nal of Classification, 3, 5-48

Legendre P. and Legendre L. (1998) Numerical Ecology, Elsevier Science B.V. 20, pp274-288.

See Also

aboot diss.dist poppr.amova

82 partial_clone

Examples

data(nancycats)
(nan9 <- popsub(nancycats, 9))
(neinan <- nei.dist(nan9))
(ednan <- edwards.dist(nan9))
(rodnan <- rogers.dist(nan9))
(reynan <- reynolds.dist(nan9))
(pronan <- prevosti.dist(nan9))

old2new_genclone Convert an old genclone object to a new genclone object

Description

Convert an old genclone object to a new genclone object

Usage

old2new_genclone(object, donor = new(class(object)))

Arguments

object a genclone object from poppr v. 1.1

donor a new genclone object from poppr v. 2.0

Author(s)

Zhian N. Kamvar

partial_clone Simulated data illustrating a Minimum Spanning Network based on
Bruvo’s Distance

Description

These data were simulated using SimuPOP version 1.0.8 with 99.9% clonal reproduction over
10,000 generations. Populations were assigned post-hoc and are simply present for the purposes
of demonstrating a minimum spanning network with Bruvo’s distance.

Usage

data(partial_clone)

Format

a [genind()] object with 50 individuals, 10 loci, and four populations.

pgen 83

References

Bo Peng and Christopher Amos (2008) Forward-time simulations of nonrandom mating populations
using simuPOP. *bioinformatics*, 24 (11): 1408-1409.

pgen Genotype Probability

Description

Calculate the probability of genotypes based on the product of allele frequencies over all loci.

Usage

pgen(gid, pop = NULL, by_pop = TRUE, log = TRUE, freq = NULL, ...)

Arguments

gid a genind or genclone object.

pop either a formula to set the population factor from the strata slot or a vector
specifying the population factor for each sample. Defaults to NULL.

by_pop When this is TRUE (default), the calculation will be done by population.

log a logical if log =TRUE (default), the values returned will be log(Pgen). If log
= FALSE, the values returned will be Pgen.

freq a vector or matrix of allele frequencies. This defaults to NULL, indicating that the
frequencies will be determined via round-robin approach in rraf. If this matrix
or vector is not provided, zero-value allele frequencies will automatically be
corrected. For details, please see the documentation on correcting rare alleles.

... options from correcting rare alleles. The default is to correct allele frequencies
to 1/n

Details

Pgen is the probability of a given genotype occuring in a population assuming HWE. Thus, the
value for diploids is

Pgen =

(
m∏
i=1

pi

)
2h

where pi are the allele frequencies and h is the count of the number of heterozygous sites in the
sample (Arnaud-Haond et al. 2007; Parks and Werth, 1993). The allele frequencies, by default, are
calculated using a round-robin approach where allele frequencies at a particular locus are calculated
on the clone-censored genotypes without that locus.

To avoid issues with numerical precision of small numbers, this function calculates pgen per locus
by adding up log-transformed values of allele frequencies. These can easily be transformed to return
the true value (see examples).

84 pgen

Value

A vector containing Pgen values per locus for each genotype in the object.

Note

For haploids, Pgen at a particular locus is the allele frequency. This function cannot handle poly-
ploids. Additionally, when the argument pop is not NULL, by_pop is automatically TRUE.

Author(s)

Zhian N. Kamvar, Jonah Brooks, Stacy A. Krueger-Hadfield, Erik Sotka

References

Arnaud-Haond, S., Duarte, C. M., Alberto, F., & Serrão, E. A. 2007. Standardizing methods to
address clonality in population studies. Molecular Ecology, 16(24), 5115-5139.

Parks, J. C., & Werth, C. R. 1993. A study of spatial features of clones in a population of bracken
fern, Pteridium aquilinum (Dennstaedtiaceae). American Journal of Botany, 537-544.

See Also

psex, rraf, rrmlg, rare_allele_correction

Examples

data(Pram)
head(pgen(Pram, log = FALSE))

Not run:
You can also supply the observed allele frequencies
pramfreq <- Pram %>% genind2genpop() %>% tab(freq = TRUE)
head(pgen(Pram, log = FALSE, freq = pramfreq))

You can get the Pgen values over all loci by summing over the logged results:
pgen(Pram, log = TRUE) %>% # calculate pgen matrix

rowSums(na.rm = TRUE) %>% # take the sum of each row
exp() # take the exponent of the results

You can also take the product of the non-logged results:
apply(pgen(Pram, log = FALSE), 1, prod, na.rm = TRUE)

Rare Allele Correction ---
##
If you don't supply a table of frequencies, they are calculated with rraf
with correction = TRUE. This is normally benign when analyzing large
populations, but it can have a great effect on small populations. To help
control this, you can supply arguments described in
help("rare_allele_correction").

Default is to correct by 1/n per population. Since the calculation is

Pinf 85

performed on a smaller sample size due to round robin clone correction, it
would be more appropriate to correct by 1/rrmlg at each locus. This is
acheived by setting d = "rrmlg". Since this is a diploid, we would want to
account for the number of chromosomes, and so we set mul = 1/2
head(pgen(Pram, log = FALSE, d = "rrmlg", mul = 1/2)) # compare with the output above

If you wanted to treat all alleles as equally rare, then you would set a
specific value (let's say the rare alleles are 1/100):
head(pgen(Pram, log = FALSE, e = 1/100))

End(Not run)

Pinf Phytophthora infestans data from Mexico and South America.

Description

The Pinf data set contains 86 isolates genotyped over 11 microsatellite loci collected from Mexico,
Peru, Columbia, and Ecuador. This is a subset of the data used for the reference below.

Usage

data(Pinf)

Format

a [genclone-class] object with 2 hierarchical levels called "Continent" and "Country" that contain 2
and 4 populations, respectively.

References

Goss, Erica M., Javier F. Tabima, David EL Cooke, Silvia Restrepo, William E. Fry, Gregory A.
Forbes, Valerie J. Fieland, Martha Cardenas, and Niklaus J. Grünwald. "The Irish potato famine
pathogen *Phytophthora infestans* originated in central Mexico rather than the Andes." Proceed-
ings of the National Academy of Sciences 111:8791-8796. doi: doi:10.1073/pnas.1401884111

plot_poppr_msn Plot minimum spanning networks produced in poppr.

Description

This function allows you to take the output of poppr.msn and bruvo.msn and customize the plot by
labeling groups of individuals, size of nodes, and adjusting the palette and scale bar.

https://doi.org/10.1073/pnas.1401884111

86 plot_poppr_msn

Usage

plot_poppr_msn(
x,
poppr_msn,
gscale = TRUE,
gadj = 3,
mlg.compute = "original",
glim = c(0, 0.8),
gweight = 1,
wscale = TRUE,
nodescale = 10,
nodebase = NULL,
nodelab = 2,
inds = "ALL",
mlg = FALSE,
quantiles = TRUE,
cutoff = NULL,
palette = NULL,
layfun = layout.auto,
beforecut = FALSE,
pop.leg = TRUE,
size.leg = TRUE,
scale.leg = TRUE,
...

)

Arguments

x a genind, genclone, genlight, or snpclone object from which poppr_msn
was derived.

poppr_msn a list produced from either poppr.msn or bruvo.msn. This list should con-
tain a graph, a vector of population names and a vector of hexadecimal color
definitions for each population.

gscale "grey scale". If this is TRUE, this will scale the color of the edges proportional
to the observed distance, with the lines becoming darker for more related nodes.
See greycurve for details.

gadj "grey adjust". a positive integer greater than zero that will serve as the expo-
nent to the edge weight to scale the grey value to represent that weight.

mlg.compute if the multilocus genotypes are set to "custom" (see mll.custom for details) in
your genclone object, this will specify which mlg level to calculate the nodes
from. See details.

glim "grey limit". Two numbers between zero and one. They determine the upper
and lower limits for the gray function. Default is 0 (black) and 0.8 (20% black).

gweight "grey weight". an integer. If it’s 1, the grey scale will be weighted to empha-
size the differences between closely related nodes. If it is 2, the grey scale will
be weighted to emphasize the differences between more distantly related nodes.

plot_poppr_msn 87

wscale "width scale". If this is TRUE, the edge widths will be scaled proportional to
the inverse of the observed distance , with the lines becoming thicker for more
related nodes.

nodescale a numeric indicating how to scale the node sizes (scales by area).

nodebase deprecated a numeric indicating what base logarithm should be used to scale
the node sizes. Defaults to 1.15. See details.

nodelab an integer specifying the smallest size of node to label. See details.

inds a character or numeric vector indicating which samples or multilocus geno-
types to label on the graph. See details.

mlg logical When TRUE, the nodes will be labeled by multilocus genotype. When
FALSE (default), nodes will be labeled by sample names.

quantiles logical. When set to TRUE (default), the scale bar will be composed of the
quantiles from the observed edge weights. When set to FALSE, the scale bar
will be composed of a smooth gradient from the minimum edge weight to the
maximum edge weight.

cutoff a number indicating the longest distance to display in your graph. This is per-
formed by removing edges with weights greater than this number.

palette a function or character corresponding to a specific palette you want to use to
delimit your populations. The default is whatever palette was used to produce
the original graph.

layfun a function specifying the layout of nodes in your graph. It defaults to layout.auto.

beforecut if TRUE, the layout of the graph will be computed before any edges are removed
with cutoff. If FALSE (Default), the layout will be computed after any edges
are removed.

pop.leg if TRUE, a legend indicating the populations will appear in the top right corner of
the graph, but will not overlap. Setting pop.leg = FALSE disables this legend.
See details.

size.leg if TRUE, a legend displyaing the number of samples per node will appear either
below the population legend or in the top right corner of the graph. Setting
size.leg = FALSE disables this legend.

scale.leg if TRUE, a scale bar indicating the distance will appear under the graph. Setting
scale.leg = FALSE suppresses this bar. See details.

... any other parameters to be passed on to plot.igraph.

Details

The previous incarnation of msn plotting in poppr simply plotted the minimum spanning network
with the legend of populations, but did not provide a scale bar and it did not provide the user a
simple way of manipulating the layout or labels. This function allows the user to manipulate many
facets of graph creation, making the creation of minimum spanning networks ever so slightly more
user friendly.

This function must have both the source data and the output msn to work. The source data must
contain the same population structure as the graph. Every other parameter has a default setting.

Parameter details:

88 plot_poppr_msn

• inds By default, the graph will label each node (circle) with all of the samples (individuals)
that are contained within that node. As each node represents a single multilocus genotype
(MLG) or individuals (n >= 1), this argument is designed to allow you to selectively label
the nodes based on query of sample name or MLG number. If the option mlg = TRUE, the
multilocus genotype assignment will be used to label the node. If you do not want to label
the nodes by individual or multilocus genotype, simply set this to a name that doesn’t exist
in your data.

• nodescale The nodes (circles) on the graph represent different multilocus genotypes. The
area of the nodes represent the number of individuals. Setting nodescale will scale the area
of the nodes.

• nodelab If a node is not labeled by individual, this will label the size of the nodes greater
than or equal to this value. If you don’t want to label the size of the nodes, simply set this to
a very high number.

• cutoff This is useful for when you want to investigate groups of multilocus genotypes sepa-
rated by a specific distance or if you have two distinct populations and you want to physically
separate them in your network.

• beforecut This is an indicator useful if you want to maintain the same position of the nodes
before and after removing edges with the cutoff argument. This works best if you set a seed
before you run the function.

mlg.compute: Each node on the graph represents a different multilocus genotype. The edges on
the graph represent genetic distances that connect the multilocus genotypes. In genclone objects, it
is possible to set the multilocus genotypes to a custom definition. This creates a problem for clone
correction, however, as it is very possible to define custom lineages that are not monophyletic.
When clone correction is performed on these definitions, information is lost from the graph. To
circumvent this, The clone correction will be done via the computed multilocus genotypes, either
"original" or "contracted". This is specified in the mlg.compute argument, above.

legends: To avoid drawing the legend over the graph, legends are separated by different plotting
areas. This means that if legends are included, you cannot plot multiple MSNs in a single plot.
The scale bar (to be added in manually) can be obtained from greycurve and the legend can be
plotted with legend.

Value

the modified msn list, invisibly.

Author(s)

Zhian N. Kamvar

See Also

layout.auto plot.igraph poppr.msn bruvo.msn greycurve delete_edges palette

Examples

Using a data set of the Aphanomyces eutieches root rot pathogen.
data(Aeut)

plot_poppr_msn 89

adist <- diss.dist(Aeut, percent = TRUE)
amsn <- poppr.msn(Aeut, adist, showplot = FALSE)

Default
library("igraph") # To get all the layouts.
set.seed(500)
plot_poppr_msn(Aeut, amsn, gadj = 15)

Not run:

Different layouts (from igraph) can be used by supplying the function name.
set.seed(500)
plot_poppr_msn(Aeut, amsn, gadj = 15, layfun = layout_with_kk)

Removing link between populations (cutoff = 0.2) and labelling no individuals
set.seed(500)
plot_poppr_msn(Aeut, amsn, inds = "none", gadj = 15, beforecut = TRUE, cutoff = 0.2)

Labelling individual #57 because it is an MLG that crosses populations
Showing clusters of MLGS with at most 5% variation
Notice that the Mt. Vernon population appears to be more clonal
set.seed(50)
plot_poppr_msn(Aeut, amsn, gadj = 15, cutoff = 0.05, inds = "057")

data(partial_clone)
pcmsn <- bruvo.msn(partial_clone, replen = rep(1, 10))

You can plot using a color palette or a vector of named colors
Here's a way to define the colors beforehand
pc_colors <- nPop(partial_clone) %>%

RColorBrewer::brewer.pal("Set2") %>%
setNames(popNames(partial_clone))

pc_colors

Labelling the samples contained in multilocus genotype 9
set.seed(999)
plot_poppr_msn(partial_clone, pcmsn, palette = pc_colors, inds = 9)

Doing the same thing, but using one of the sample names as input.
set.seed(999)
plot_poppr_msn(partial_clone, pcmsn, palette = pc_colors, inds = "sim 20")

Note that this is case sensitive. Nothing is labeled.
set.seed(999)
plot_poppr_msn(partial_clone, pcmsn, palette = pc_colors, inds = "Sim 20")

Something pretty
data(microbov)
mdist <- diss.dist(microbov, percent = TRUE)
micmsn <- poppr.msn(microbov, mdist, showplot = FALSE)

90 poppr

plot_poppr_msn(microbov, micmsn, palette = "terrain.colors", inds = "n",
quantiles = FALSE)

plot_poppr_msn(microbov, micmsn, palette = "terrain.colors", inds = "n",
cutoff = 0.3, quantiles = FALSE)

Utilizing vectors for palettes

data(Pram)
Pram_sub <- popsub(Pram, exclude = c("Nursery_CA", "Nursery_OR"))

Creating the network for the forest
min_span_net_sub <- bruvo.msn(Pram_sub, replen = other(Pram)$REPLEN,

add = TRUE, loss = TRUE, showplot = FALSE,
include.ties = TRUE)

Creating the network with nurseries
min_span_net <- bruvo.msn(Pram, replen = other(Pram)$REPLEN,

add = TRUE, loss = TRUE, showplot = FALSE,
include.ties = TRUE)

Only forest genotypes
set.seed(70)
plot_poppr_msn(Pram,

min_span_net_sub,
inds = "ALL",
mlg = TRUE,
gadj = 9,
nodescale = 5,
palette = other(Pram)$comparePal,
cutoff = NULL,
quantiles = FALSE,
beforecut = TRUE)

With Nurseries
set.seed(70)
plot_poppr_msn(Pram,

min_span_net,
inds = "ALL",
mlg = TRUE,
gadj = 9,
nodescale = 5,
palette = other(Pram)$comparePal,
cutoff = NULL,
quantiles = FALSE,
beforecut = TRUE)

End(Not run)

poppr Produce a basic summary table for population genetic analyses.

poppr 91

Description

For the poppr package description, please see package?poppr

This function allows the user to quickly view indices of heterozygosity, evenness, and linkage to
aid in the decision of a path to further analyze a specified dataset. It natively takes adegenet::genind
and genclone objects, but can convert any raw data formats that adegenet can take (fstat, structure,
genetix, and genpop) as well as genalex files exported into a csv format (see read.genalex() for
details).

Usage

poppr(
dat,
total = TRUE,
sublist = "ALL",
exclude = NULL,
blacklist = NULL,
sample = 0,
method = 1,
missing = "ignore",
cutoff = 0.05,
quiet = FALSE,
clonecorrect = FALSE,
strata = 1,
keep = 1,
plot = TRUE,
hist = TRUE,
index = "rbarD",
minsamp = 10,
legend = FALSE,
...

)

Arguments

dat a adegenet::genind object OR a genclone object OR any fstat, structure, genetix,
genpop, or genalex formatted file.

total When TRUE (default), indices will be calculated for the pooled populations.

sublist a list of character strings or integers to indicate specific population names (ac-
cessed via adegenet::popNames()). Defaults to "ALL".

exclude a vector of population names or indexes that the user wishes to discard. Default
to NULL.

blacklist DEPRECATED, use exclude.

sample an integer indicating the number of permutations desired to obtain p-values.
Sampling will shuffle genotypes at each locus to simulate a panmictic population
using the observed genotypes. Calculating the p-value includes the observed
statistics, so set your sample number to one off for a round p-value (eg. sample =
999 will give you p = 0.001 and sample = 1000 will give you p = 0.000999001).

92 poppr

method an integer from 1 to 4 indicating the method of sampling desired. see shufflepop()
for details.

missing how should missing data be treated? "zero" and "mean" will set the missing
values to those documented in tab(). "loci" and "geno" will remove any
loci or genotypes with missing data, respectively (see missingno() for more
information.

cutoff numeric a number from 0 to 1 indicating the percent missing data allowed
for analysis. This is to be used in conjunction with the flag missing (see
missingno() for details)

quiet FALSE (default) will display a progress bar for each population analyzed.

clonecorrect default FALSE. must be used with the strata parameter, or the user will poten-
tially get undesired results. see clonecorrect() for details.

strata a formula indicating the hierarchical levels to be used. The hierarchies should
be present in the strata slot. See strata() for details.

keep an integer. This indicates which strata you wish to keep after clone correct-
ing your data sets. To combine strata, just set keep from 1 to the number of
straifications set in strata. see clonecorrect() for details.

plot logical if TRUE (default) and sampling > 0, a histogram will be produced for
each population.

hist logical Deprecated. Use plot.

index character Either "Ia" or "rbarD". If hist = TRUE, this will determine the index
used for the visualization.

minsamp an integer indicating the minimum number of individuals to resample for rar-
efaction analysis. See vegan::rarefy() for details.

legend logical. When this is set to TRUE, a legend describing the resulting table
columns will be printed. Defaults to FALSE

... arguments to be passed on to diversity_stats()

Details

This table is intended to be a first look into the dynamics of mutlilocus genotype diversity. Many
of the statistics (except for the the index of association) are simply based on counts of multilocus
genotypes and do not take into account the actual allelic states. Descriptions of the statistics can
be found in the Algorithms and Equations vignette: vignette("algo", package = "poppr").

sampling:
The sampling procedure is explicitly for testing the index of association. None of the other diver-
sity statistics (H, G, lambda, E.5) are tested with this sampling due to the differing data types. To
obtain confidence intervals for these statistics, please see diversity_ci().

rarefaction:
Rarefaction analysis is performed on the number of multilocus genotypes because it is relatively
easy to estimate (Grünwald et al., 2003). To obtain rarefied estimates of diversity, it is possible to
use diversity_ci() with the argument rarefy = TRUE

poppr 93

graphic:
This function outputs a ggplot2 graphic of histograms. These can be manipulated to be visualized
in another manner by retrieving the plot with the last_plot() command from ggplot2. A useful
manipulation would be to arrange the graphs into a single column so that the values of the statistic
line up: p <- last_plot(); p + facet_wrap(~population, ncol = 1, scales = "free_y")
The name for the groupings is "population" and the name for the x axis is "value".

Value

A data frame with populations in rows and the following columns:

• Pop: A vector indicating the population factor

• N: An integer vector indicating the number of individuals/isolates in the specified population.

• MLG: An integer vector indicating the number of multilocus genotypes found in the specified
population, (see: mlg())

• eMLG: The expected number of MLG at the lowest common sample size (set by the parameter
minsamp).

• SE: The standard error for the rarefaction analysis

• H: Shannon-Weiner Diversity index

• G: Stoddard and Taylor’s Index

• lambda: Simpson’s index

• E.5: Evenness

• Hexp: Nei’s gene diversity (expected heterozygosity)

• Ia: A numeric vector giving the value of the Index of Association for each population factor,
(see ia()).

• p.Ia: A numeric vector indicating the p-value for Ia from the number of reshufflings indicated
in sample. Lowest value is 1/n where n is the number of observed values.

• rbarD: A numeric vector giving the value of the Standardized Index of Association for each
population factor, (see ia()).

• p.rD: A numeric vector indicating the p-value for rbarD from the number of reshuffles indi-
cated in sample. Lowest value is 1/n where n is the number of observed values.

• File: A vector indicating the name of the original data file.

Note

The calculation of Hexp has changed from poppr 1.x. It was previously calculated based on the di-
versity of multilocus genotypes, resulting in a value of 1 for sexual populations. This was obviously
not Nei’s 1978 expected heterozygosity. We have thus changed the statistic to be the true value of
Hexp by calculating (n

n−1)1 −
∑k

i=1 p
2
i where p is the allele frequencies at a given locus and n is

the number of observed alleles (Nei, 1978) in each locus and then returning the average. Caution
should be exercised in interpreting the results of Hexp with polyploid organisms with ambiguous
ploidy. The lack of allelic dosage information will cause rare alleles to be over-represented and
artificially inflate the index. This is especially true with small sample sizes.

94 poppr

Author(s)

Zhian N. Kamvar

References

Paul-Michael Agapow and Austin Burt. Indices of multilocus linkage disequilibrium. Molecular
Ecology Notes, 1(1-2):101-102, 2001

A.H.D. Brown, M.W. Feldman, and E. Nevo. Multilocus structure of natural populations of Hordeum
spontaneum. Genetics, 96(2):523-536, 1980.

Niklaus J. Gr\"unwald, Stephen B. Goodwin, Michael G. Milgroom, and William E. Fry. Analysis
of genotypic diversity data for populations of microorganisms. Phytopathology, 93(6):738-46, 2003

Bernhard Haubold and Richard R. Hudson. Lian 3.0: detecting linkage disequilibrium in multilocus
data. Bioinformatics, 16(9):847-849, 2000.

Kenneth L.Jr. Heck, Gerald van Belle, and Daniel Simberloff. Explicit calculation of the rarefaction
diversity measurement and the determination of sufficient sample size. Ecology, 56(6):pp. 1459-
1461, 1975

Masatoshi Nei. Estimation of average heterozygosity and genetic distance from a small number of
individuals. Genetics, 89(3):583-590, 1978.

S H Hurlbert. The nonconcept of species diversity: a critique and alternative parameters. Ecology,
52(4):577-586, 1971.

J.A. Ludwig and J.F. Reynolds. Statistical Ecology. A Primer on Methods and Computing. New
York USA: John Wiley and Sons, 1988.

Simpson, E. H. Measurement of diversity. Nature 163: 688, 1949 doi:10.1038/163688a0

Good, I. J. (1953). On the Population Frequency of Species and the Estimation of Population
Parameters. Biometrika 40(3/4): 237-264.

Lande, R. (1996). Statistics and partitioning of species diversity, and similarity among multiple
communities. Oikos 76: 5-13.

Jari Oksanen, F. Guillaume Blanchet, Roeland Kindt, Pierre Legendre, Peter R. Minchin, R. B.
O’Hara, Gavin L. Simpson, Peter Solymos, M. Henry H. Stevens, and Helene Wagner. vegan:
Community Ecology Package, 2012. R package version 2.0-5.

E.C. Pielou. Ecological Diversity. Wiley, 1975.

Claude Elwood Shannon. A mathematical theory of communication. Bell Systems Technical Jour-
nal, 27:379-423,623-656, 1948

J M Smith, N H Smith, M O’Rourke, and B G Spratt. How clonal are bacteria? Proceedings of the
National Academy of Sciences, 90(10):4384-4388, 1993.

J.A. Stoddart and J.F. Taylor. Genotypic diversity: estimation and prediction in samples. Genetics,
118(4):705-11, 1988.

See Also

clonecorrect(), poppr.all(), ia(), missingno(), mlg(), diversity_stats(), diversity_ci()

poppr.all 95

Examples

data(nancycats)
poppr(nancycats)

Not run:
Sampling
poppr(nancycats, sample = 999, total = FALSE, plot = TRUE)

Customizing the plot
library("ggplot2")
p <- last_plot()
p + facet_wrap(~population, scales = "free_y", ncol = 1)

Turning off diversity statistics (see get_stats)
poppr(nancycats, total=FALSE, H = FALSE, G = FALSE, lambda = FALSE, E5 = FALSE)

The previous version of poppr contained a definition of Hexp, which
was calculated as (N/(N - 1))*lambda. It basically looks like an unbiased
Simpson's index. This statistic was originally included in poppr because it
was originally included in the program multilocus. It was finally figured
to be an unbiased Simpson's diversity metric (Lande, 1996; Good, 1953).

data(Aeut)

uSimp <- function(x){
lambda <- vegan::diversity(x, "simpson")
x <- drop(as.matrix(x))
if (length(dim(x)) > 1){
N <- rowSums(x)

} else {
N <- sum(x)

}
return((N/(N-1))*lambda)

}
poppr(Aeut, uSimp = uSimp)

Demonstration with viral data
Note: this is a larger data set that could take a couple of minutes to run
on slower computers.
data(H3N2)
strata(H3N2) <- data.frame(other(H3N2)$x)
setPop(H3N2) <- ~country
poppr(H3N2, total = FALSE, sublist=c("Austria", "China", "USA"),

clonecorrect = TRUE, strata = ~country/year)

End(Not run)

poppr.all Process a list of files with poppr

96 poppr.amova

Description

poppr.all is a wrapper function that will loop through a list of files from the working directory,
execute [poppr()], and concatenate the output into one data frame.

Usage

poppr.all(filelist, ...)

Arguments

filelist a list of files in the current working directory

... arguments passed on to poppr

Value

see [poppr()]

Author(s)

Zhian N. Kamvar

See Also

[poppr()], [getfile()]

Examples

Not run:
Obtain a list of fstat files from a directory.
x <- getfile(multi=TRUE, pattern="^.+?dat$")

run the analysis on each file.
poppr.all(file.path(x$path, x$files))

End(Not run)

poppr.amova Perform Analysis of Molecular Variance (AMOVA) on genind or gen-
clone objects.

Description

This function simplifies the process necessary for performing AMOVA in R. It gives user the choice
of utilizing either the ade4 or the pegas implementation of AMOVA. See ade4::amova() (ade4)
and pegas::amova() (pegas) for details on the specific implementation.

poppr.amova 97

Usage

poppr.amova(
x,
hier = NULL,
clonecorrect = FALSE,
within = TRUE,
dist = NULL,
squared = TRUE,
freq = TRUE,
correction = "quasieuclid",
sep = "_",
filter = FALSE,
threshold = 0,
algorithm = "farthest_neighbor",
threads = 1L,
missing = "loci",
cutoff = 0.05,
quiet = FALSE,
method = c("ade4", "pegas"),
nperm = 0

)

Arguments

x a genind, genclone, genlight, or snpclone object

hier a hierarchical formula that defines your population hierarchy. (e.g.: ~Population/Subpopulation).
See Details below.

clonecorrect logical if TRUE, the data set will be clone corrected with respect to the lowest
level of the hierarchy. The default is set to FALSE. See clonecorrect() for
details.

within logical. When this is set to TRUE (Default), variance within individuals are
calculated as well. If this is set to FALSE, The lowest level of the hierarchy will
be the sample level. See Details below.

dist an optional distance matrix calculated on your data. If this is set to NULL (de-
fault), the raw pairwise distances will be calculated via dist().

squared if a distance matrix is supplied, this indicates whether or not it represents squared
distances.

freq logical. If within = FALSE, the parameter rho is calculated (Ronfort et al.
1998; Meirmans and Liu 2018). By setting freq = TRUE, (default) allele counts
will be converted to frequencies before the distance is calculated, otherwise,
the distance will be calculated on allele counts, which can bias results in mixed-
ploidy data sets. Note that this option has no effect for haploid or presence/absence
data sets.

correction a character defining the correction method for non-euclidean distances. Op-
tions are ade4::quasieuclid() (Default), ade4::lingoes(), and ade4::cailliez().
See Details below.

98 poppr.amova

sep Deprecated. As of poppr version 2, this argument serves no purpose.
filter logical When set to TRUE, mlg.filter will be run to determine genotypes from

the distance matrix. It defaults to FALSE. You can set the parameters with
algorithm and threshold arguments. Note that this will not be performed
when within = TRUE. Note that the threshold should be the number of allow-
able substitutions if you don’t supply a distance matrix.

threshold a number indicating the minimum distance two MLGs must be separated by to
be considered different. Defaults to 0, which will reflect the original (naive)
MLG definition.

algorithm determines the type of clustering to be done.
"farthest_neighbor" (default) merges clusters based on the maximum dis-

tance between points in either cluster. This is the strictest of the three.
"nearest_neighbor" merges clusters based on the minimum distance between

points in either cluster. This is the loosest of the three.
"average_neighbor" merges clusters based on the average distance between

every pair of points between clusters.
threads integer When using filtering or genlight objects, this parameter specifies the

number of parallel processes passed to mlg.filter() and/or bitwise.dist().
missing specify method of correcting for missing data utilizing options given in the func-

tion missingno(). Default is "loci". This only applies to genind or genclone
objects.

cutoff specify the level at which missing data should be removed/modified. See missingno()
for details. This only applies to genind or genclone objects.

quiet logical If FALSE (Default), messages regarding any corrections will be printed
to the screen. If TRUE, no messages will be printed.

method Which method for calculating AMOVA should be used? Choices refer to pack-
age implementations: "ade4" (default) or "pegas". See details for differences.

nperm the number of permutations passed to the pegas implementation of amova.

Details

The poppr implementation of AMOVA is a very detailed wrapper for the ade4 implementation. The
output is an ade4::amova() class list that contains the results in the first four elements. The inputs
are contained in the last three elements. The inputs required for the ade4 implementation are:

1. a distance matrix on all unique genotypes (haplotypes)
2. a data frame defining the hierarchy of the distance matrix
3. a genotype (haplotype) frequency table.

All of this data can be constructed from a genind or genlight object, but can be daunting for a novice
R user. This function automates the entire process. Since there are many variables regarding genetic
data, some points need to be highlighted:

On Hierarchies:: The hierarchy is defined by different population strata that separate your
data hierarchically. These strata are defined in the strata slot of genind, genlight, genclone, and
snpclone objects. They are useful for defining the population factor for your data. See the function
strata() for details on how to properly define these strata.

poppr.amova 99

On Within Individual Variance:: Heterozygosities within genotypes are sources of variation
from within individuals and can be quantified in AMOVA. When within = TRUE, poppr will
split genotypes into haplotypes with the function make_haplotypes() and use those to calcu-
late within-individual variance. No estimation of phase is made. This acts much like the default
settings for AMOVA in the Arlequin software package. Within individual variance will not be
calculated for haploid individuals or dominant markers as the haplotypes cannot be split further.
Setting within = FALSE uses the euclidean distance of the allele frequencies within each individ-
ual. Note: within = TRUE is incompatible with filter = TRUE. In this case, within will be set to
FALSE

On Euclidean Distances:: With the ade4 implementation of AMOVA (utilized by poppr),
distances must be Euclidean (due to the nature of the calculations). Unfortunately, many genetic
distance measures are not always euclidean and must be corrected for before being analyzed.
Poppr automates this with three methods implemented in ade4, quasieuclid(), lingoes(), and
cailliez(). The correction of these distances should not adversely affect the outcome of the
analysis.

On Filtering:: Filtering multilocus genotypes is performed by mlg.filter(). This can neces-
sarily only be done AMOVA tests that do not account for within-individual variance. The distance
matrix used to calculate the amova is derived from using mlg.filter() with the option stats =
"distance", which reports the distance between multilocus genotype clusters. One useful way
to utilize this feature is to correct for genotypes that have equivalent distance due to missing data.
(See example below.)

On Methods:: Both ade4 and pegas have implementations of AMOVA, both of which are
appropriately called "amova". The ade4 version is faster, but there have been questions raised
as to the validity of the code utilized. The pegas version is slower, but careful measures have
been implemented as to the accuracy of the method. It must be noted that there appears to be
a bug regarding permuting analyses where within individual variance is accounted for (within
= TRUE) in the pegas implementation. If you want to perform permutation analyses on the pegas
implementation, you must set within = FALSE. In addition, while clone correction is implemented
for both methods, filtering is only implemented for the ade4 version.

On Polyploids:: As of poppr version 2.7.0, this function is able to calculate phi statistics for
within-individual variance for polyploid data with full dosage information. When a data set does
not contain full dosage information for all samples, then the resulting pseudo-haplotypes will
contain missing data, which would result in an incorrect estimate of variance.

Instead, the AMOVA will be performed on the distance matrix derived from allele counts or
allele frequencies, depending on the freq option. This has been shown to be robust to estimates
with mixed ploidy (Ronfort et al. 1998; Meirmans and Liu 2018). If you wish to brute-force
your way to estimating AMOVA using missing values, you can split your haplotypes with the
make_haplotypes() function.

One strategy for addressing ambiguous dosage in your polyploid data set would be to convert
your data to polysat’s genambig class with the as.genambig(), estimate allele frequencies with
polysat::deSilvaFreq(), and use these frequencies to randomly sample alleles to fill in the
ambiguous alleles.

100 poppr.amova

Value

a list of class amova from the ade4 or pegas package. See ade4::amova() or pegas::amova() for
details.

References

Excoffier, L., Smouse, P.E. and Quattro, J.M. (1992) Analysis of molecular variance inferred from
metric distances among DNA haplotypes: application to human mitochondrial DNA restriction
data. Genetics, 131, 479-491.

Ronfort, J., Jenczewski, E., Bataillon, T., and Rousset, F. (1998). Analysis of population structure
in autotetraploid species. Genetics, 150, 921–930.

Meirmans, P., Liu, S. (2018) Analysis of Molecular Variance (AMOVA) for Autopolyploids Sub-
mitted.

See Also

ade4::amova(), pegas::amova(), clonecorrect(), diss.dist(), missingno(), ade4::is.euclid(),
strata(), make_haplotypes(), as.genambig()

Examples

data(Aeut)
strata(Aeut) <- other(Aeut)$population_hierarchy[-1]
agc <- as.genclone(Aeut)
agc
amova.result <- poppr.amova(agc, ~Pop/Subpop)
amova.result
amova.test <- randtest(amova.result) # Test for significance
plot(amova.test)
amova.test

Not run:

You can get the same results with the pegas implementation
amova.pegas <- poppr.amova(agc, ~Pop/Subpop, method = "pegas")
amova.pegas
amova.pegas$varcomp/sum(amova.pegas$varcomp)

Clone correction is possible
amova.cc.result <- poppr.amova(agc, ~Pop/Subpop, clonecorrect = TRUE)
amova.cc.result
amova.cc.test <- randtest(amova.cc.result)
plot(amova.cc.test)
amova.cc.test

Example with filtering
data(monpop)
splitStrata(monpop) <- ~Tree/Year/Symptom
poppr.amova(monpop, ~Symptom/Year) # gets a warning of zero distances

poppr.msn 101

poppr.amova(monpop, ~Symptom/Year, filter = TRUE, threshold = 0.1) # no warning

End(Not run)

poppr.msn Create a minimum spanning network of selected populations using a
distance matrix.

Description

Create a minimum spanning network of selected populations using a distance matrix.

Usage

poppr.msn(
gid,
distmat,
palette = topo.colors,
mlg.compute = "original",
sublist = "All",
exclude = NULL,
blacklist = NULL,
vertex.label = "MLG",
gscale = TRUE,
glim = c(0, 0.8),
gadj = 3,
gweight = 1,
wscale = TRUE,
showplot = TRUE,
include.ties = FALSE,
threshold = NULL,
clustering.algorithm = NULL,
...

)

Arguments

gid a genind, genclone, genlight, or snpclone object

distmat a distance matrix that has been derived from your data set.

palette a vector or function defining the color palette to be used to color the popula-
tions on the graph. It defaults to topo.colors. See examples for details.

mlg.compute if the multilocus genotypes are set to "custom" (see mll.custom for details) in
your genclone object, this will specify which mlg level to calculate the nodes
from. See details.

102 poppr.msn

sublist a vector of population names or indexes that the user wishes to keep. Default
to "ALL".

exclude a vector of population names or indexes that the user wishes to discard. Default
to NULL.

blacklist DEPRECATED, use exclude.
vertex.label a vector of characters to label each vertex. There are two defaults: "MLG"

will label the nodes with the multilocus genotype from the original data set and
"inds" will label the nodes with the representative individual names.

gscale "grey scale". If this is TRUE, this will scale the color of the edges proportional
to the observed distance, with the lines becoming darker for more related nodes.
See greycurve for details.

glim "grey limit". Two numbers between zero and one. They determine the upper
and lower limits for the gray function. Default is 0 (black) and 0.8 (20% black).
See greycurve for details.

gadj "grey adjust". a positive integer greater than zero that will serve as the ex-
ponent to the edge weight to scale the grey value to represent that weight. See
greycurve for details.

gweight "grey weight". an integer. If it’s 1, the grey scale will be weighted to empha-
size the differences between closely related nodes. If it is 2, the grey scale will
be weighted to emphasize the differences between more distantly related nodes.
See greycurve for details.

wscale "width scale". If this is TRUE, the edge widths will be scaled proportional to
the inverse of the observed distance , with the lines becoming thicker for more
related nodes.

showplot logical. If TRUE, the graph will be plotted. If FALSE, it will simply be returned.
include.ties logical. If TRUE, the graph will include all edges that were arbitrarily passed

over in favor of another edge of equal weight. If FALSE, which is the default,
one edge will be arbitrarily selected when two or more edges are tied, resulting
in a pure minimum spanning network.

threshold numeric. By default, this is NULL, which will have no effect. Any threshold
value passed to this argument will be used in mlg.filter prior to creating the
MSN. If you have a data set that contains contracted MLGs, this argument will
override the threshold in the data set. See Details.

clustering.algorithm

string. By default, this is NULL. If threshold = NULL, this argument will have no
effect. When supplied with either "farthest_neighbor", "average_neighbor", or
"nearest_neighbor", it will be passed to mlg.filter prior to creating the MSN.
If you have a data set that contains contracted MLGs, this argument will override
the algorithm in the data set. See Details.

... any other arguments that could go into plot.igraph

Details

The minimum spanning network generated by this function is generated via igraph’s minimum.spanning.tree.
The resultant graph produced can be plotted using igraph functions, or the entire object can be plot-
ted using the function plot_poppr_msn, which will give the user a scale bar and the option to layout
your data.

poppr.msn 103

node sizes: The area of the nodes are representative of the number of samples. Because igraph
scales nodes by radius, the node sizes in the graph are represented as the square root of the number
of samples.

mlg.compute: Each node on the graph represents a different multilocus genotype. The edges on
the graph represent genetic distances that connect the multilocus genotypes. In genclone objects, it
is possible to set the multilocus genotypes to a custom definition. This creates a problem for clone
correction, however, as it is very possible to define custom lineages that are not monophyletic.
When clone correction is performed on these definitions, information is lost from the graph. To
circumvent this, The clone correction will be done via the computed multilocus genotypes, either
"original" or "contracted". This is specified in the mlg.compute argument, above.

contracted multilocus genotypes: If your incoming data set is of the class genclone, and it
contains contracted multilocus genotypes, this function will retain that information for creating the
minimum spanning network. You can use the arguments threshold and clustering.algorithm
to change the threshold or clustering algorithm used in the network. For example, if you have a
data set that has a threshold of 0.1 and you wish to have a minimum spanning network without a
threshold, you can simply add threshold = 0.0, and no clustering will happen.
The threshold and clustering.algorithm arguments can also be used to filter un-contracted
data sets.
All filtering will use the distance matrix supplied in the argument distmat.

Value

graph a minimum spanning network with nodes corresponding to MLGs within the
data set. Colors of the nodes represent population membership. Width and color
of the edges represent distance.

populations a vector of the population names corresponding to the vertex colors

colors a vector of the hexadecimal representations of the colors used in the vertex colors

Note

The edges of these graphs may cross each other if the graph becomes too large.

Author(s)

Javier F. Tabima, Zhian N. Kamvar, Jonah C. Brooks

See Also

plot_poppr_msn nancycats, upgma, nj, nodelabels, tab, missingno, bruvo.msn, greycurve

Examples

Load the data set and calculate the distance matrix for all individuals.
data(Aeut)
A.dist <- diss.dist(Aeut)

Graph it.
A.msn <- poppr.msn(Aeut, A.dist, gadj = 15, vertex.label = NA)

104 poppr_has_parallel

Find the sizes of the nodes (number of individuals per MLL):
igraph::vertex_attr(A.msn$graph, "size")^2

Not run:
Set subpopulation structure.
Aeut.sub <- as.genclone(Aeut)
setPop(Aeut.sub) <- ~Pop/Subpop

Plot respective to the subpopulation structure
As.msn <- poppr.msn(Aeut.sub, A.dist, gadj=15, vertex.label=NA)

Show only the structure of the Athena population.
As.msn <- poppr.msn(Aeut.sub, A.dist, gadj=15, vertex.label=NA, sublist=1:10)

Let's look at the structure of the microbov data set

library("igraph")
data(microbov)
micro.dist <- diss.dist(microbov, percent = TRUE)
micro.msn <- poppr.msn(microbov, micro.dist, vertex.label=NA)

Let's plot it and show where individuals have < 15% of their genotypes
different.

edge_weight <- E(micro.msn$graph)$weight
edge_labels <- ifelse(edge_weight < 0.15, round(edge_weight, 3), NA)
plot.igraph(micro.msn$graph, edge.label = edge_labels, vertex.size = 2,
edge.label.color = "red")

End(Not run)

poppr_has_parallel Determines whether openMP is support on this system.

Description

Determines whether openMP is support on this system.

Usage

poppr_has_parallel()

Value

FALSE if openMP is not supported, TRUE if it is

popsub 105

Author(s)

Zhian N. Kamvar, Jonah C. Brooks

Examples

poppr_has_parallel()

popsub Subset data by population

Description

Create a new dataset with specified populations or exclude specified populations from the dataset.

Usage

popsub(
gid,
sublist = "ALL",
exclude = NULL,
blacklist = NULL,
mat = NULL,
drop = TRUE

)

Arguments

gid a genind, genclone, genlight, or snpclone object.

sublist a vector of population names or indexes that the user wishes to keep. Default
to "ALL".

exclude a vector of population names or indexes that the user wishes to discard. Default
to NULL.

blacklist DEPRECATED, use exclude.

mat a matrix object produced by mlg.table to be subsetted. If this is present, the
subsetted matrix will be returned instead of the genind object

drop logical. If TRUE, unvarying alleles will be dropped from the population.

Value

A genind object or a matrix.

Author(s)

Zhian N. Kamvar

106 Pram

Examples

Load the dataset microbov.
data(microbov)

List the population names.
popNames(microbov)

Analyze only the populations with exactly 50 individuals
mic.50 <- popsub(microbov, sublist=c(1:6, 11:15), exclude=c(3,4,13,14))

Not run:
Analyze the first 10 populations, except for "Bazadais"
mic.10 <- popsub(microbov, sublist=1:10, exclude="Bazadais")

Take out the two smallest populations
micbig <- popsub(microbov, exclude=c("NDama", "Montbeliard"))

Analyze the two largest populations
miclrg <- popsub(microbov, sublist=c("BlondeAquitaine", "Charolais"))

End(Not run)

Pram Phytophthora ramorum data from OR Forests and Nurseries (OR and
CA)

Description

This is the data set from doi:10.5281/zenodo.13007. It has been converted to the genclone object
as of poppr version 2.0. It contains 729 samples of the Sudden Oak Death pathogen *Phytophthora
ramorum* genotyped over five microsatellite loci (Kamvar et. al., 2015). 513 samples were col-
lected from forests in Curry County, OR from 2001 to mid-2014 (labeled by watershed region). The
other 216 samples represents genotypes collected from Nurseries in OR and CA from Goss et. al.
(2009).

Usage

data(Pram)

Format

a [genclone-class] object with 3 hierarchical levels called "SOURCE", "YEAR", and, "STATE".
The other slot contains a named vector of repeat lengths called "REPLEN", a matrix of xy coordi-
nates for the forest samples called "xy", and a palette to color the ~SOURCE/STATE stratification
called "comparePal".

https://doi.org/10.5281/zenodo.13007

private_alleles 107

References

Kamvar, Z. N., Larsen, M. M., Kanaskie, A. M., Hansen, E. M., & Grünwald, N. J. (2015). Spatial
and temporal analysis of populations of the sudden oak death pathogen in Oregon forests. Phy-
topathology 105:982-989. doi: doi:10.1094/PHYTO12140350FI

Zhian N. Kamvar, Meg M. Larsen, Alan M. Kanaskie, Everett M. Hansen, & Niklaus J. Grünwald.
2014. Sudden_Oak_Death_in_Oregon_Forests: Spatial and temporal population dynamics of the
sudden oak death epidemic in Oregon Forests. ZENODO, doi: doi:10.5281/zenodo.13007

Goss, E. M., Larsen, M., Chastagner, G. A., Givens, D. R., and Grünwald, N. J. 2009. Population
genetic analysis infers migration pathways of *Phytophthora ramorum* in US nurseries. PLoS
Pathog. 5:e1000583. doi: doi:10.1371/journal.ppat.1000583

Examples

data(Pram)

Repeat lengths (previously processed via fix_replen)
other(Pram)$REPLEN

Color palette for source by state. Useful for minimum spanning networks
other(Pram)$comparePal

private_alleles Tabulate alleles the occur in only one population.

Description

Tabulate alleles the occur in only one population.

Usage

private_alleles(
gid,
form = alleles ~ .,
report = "table",
level = "population",
count.alleles = TRUE,
drop = FALSE

)

Arguments

gid a adegenet::genind or genclone object.

form a formula() giving the levels of markers and hierarchy to analyze. See Details.

https://doi.org/10.1094/PHYTO-12-14-0350-FI
https://doi.org/10.5281/zenodo.13007
https://doi.org/10.1371/journal.ppat.1000583

108 private_alleles

report one of "table", "vector", or "data.frame". Tables (Default) and data frame
will report counts along with populations or individuals. Vectors will simply re-
port which populations or individuals contain private alleles. Tables are matrices
with populations or individuals in rows and alleles in columns. Data frames are
long form.

level one of "population" (Default) or "individual".

count.alleles logical. If TRUE (Default), The report will return the observed number of alle-
les private to each population. If FALSE, each private allele will be counted once,
regardless of dosage.

drop logical. if TRUE, populations/individuals without private alleles will be dropped
from the result. Defaults to FALSE.

Details

the argument form allows for control over the strata at which private alleles should be computed. It
takes a form where the left hand side of the formula can be either "allele", "locus", or "loci". The
right hand of the equation, by default is ".". If you change it, it must correspond to strata located in
the adegenet::strata() slot. Note, that the right hand side is disabled for genpop objects.

Value

a matrix, data.frame, or vector defining the populations or individuals containing private alleles. If
vector is chosen, alleles are not defined.

Author(s)

Zhian N. Kamvar

Examples

data(Pinf) # Load P. infestans data.
private_alleles(Pinf)

Not run:
Analyze private alleles based on the country of interest:
private_alleles(Pinf, alleles ~ Country)

Number of observed alleles per locus
private_alleles(Pinf, locus ~ Country, count.alleles = TRUE)

Get raw number of private alleles per locus.
(pal <- private_alleles(Pinf, locus ~ Country, count.alleles = FALSE))

Get percentages.
sweep(pal, 2, nAll(Pinf)[colnames(pal)], FUN = "/")

An example of how these data can be displayed.
library("ggplot2")
Pinfpriv <- private_alleles(Pinf, report = "data.frame")
ggplot(Pinfpriv) + geom_tile(aes(x = population, y = allele, fill = count))

psex 109

End(Not run)

psex Probability of encountering a genotype more than once by chance

Description

Probability of encountering a genotype more than once by chance

Usage

psex(
gid,
pop = NULL,
by_pop = TRUE,
freq = NULL,
G = NULL,
method = c("single", "multiple"),
...

)

Arguments

gid a genind or genclone object.

pop either a formula to set the population factor from the strata slot or a vector
specifying the population factor for each sample. Defaults to NULL.

by_pop When this is TRUE (default), the calculation will be done by population.

freq a vector or matrix of allele frequencies. This defaults to NULL, indicating that the
frequencies will be determined via round-robin approach in rraf. If this matrix
or vector is not provided, zero-value allele frequencies will automatically be
corrected. For details, please see the documentation on correcting rare alleles.

G an integer vector specifying the number of observed genets. If NULL, this will
be the number of original multilocus genotypes for method = "single" and the
number of populations for method = "multiple". G can also be a named integer
vector for each population if by_pop = TRUE. Unnamed vectors with a lengths
greater than 1 will throw an error.

method which method of calculating psex should be used? Using method = "single"
(default) indicates that the calculation for psex should reflect the probability of
encountering a second genotype. Using method = "multiple" gives the proba-
bility of encountering multiple samples of the same genotype (see details).

... options from correcting rare alleles. The default is to correct allele frequencies
to 1/n

110 psex

Details

single encounter:: Psex is the probability of encountering a given genotype more than once by
chance. The basic equation from Parks and Werth (1993) is

psex = 1− (1− pgen)
G)

where G is the number of multilocus genotypes and pgen is the probability of a given genotype
(see pgen for its calculation). For a given value of alpha (e.g. alpha = 0.05), genotypes with psex
< alpha can be thought of as a single genet whereas genotypes with psex > alpha do not have
strong evidence that members belong to the same genet (Parks and Werth, 1993).

multiple encounters:: When method = "multiple", the method from Arnaud-Haond et al.
(1997) is used where the sum of the binomial density is taken.

psex =

N∑
i=n

(
N

i

)
(pgen)

i
(1− pgen)

N−i

where N is the number of sampling units i is the ith - 1 encounter of a given genotype, and pgen is
the value of pgen for that genotype. This procedure is performed for all samples in the data. For
example, if you have a genotype whose pgen value was 0.0001, with 5 observations out of 100
samples, the value of psex is computed like so:

dbinom(0:4, 100, 0.0001)

using by_pop = TRUE and modifying G:: It is possible to modify G for single or multiple
encounters. With method = "single", G takes place of the exponent, whereas with method =
"multiple", G replaces N (see above). If you supply a named vector for G with the population
names and by_pop = TRUE, then the value of G will be different for each population.
For example, in the case of method = "multiple", let’s say you have two populations that share a
genotype between them. The size of population A and B are 25 and 75, respectively, The values of
pgen for that genotype in population A and B are 0.005 and 0.0001, respectively, and the number
of samples with the genotype in popualtions A and B are 4 and 6, respectively. In this case psex
for this genotype would be calculated for each population separately if we don’t specify G:

psexA = dbinom(0:3, 25, 0.005)
psexB = dbinom(0:5, 75, 0.0001)

If we specify G = 100, then it changes to:

psexA = dbinom(0:3, 100, 0.005)
psexB = dbinom(0:5, 100, 0.0001)

We could also specify G to be the number of genotypes observed in the population (let’s say A =
10, B = 20)

psexA = dbinom(0:3, 10, 0.005)
psexB = dbinom(0:5, 20, 0.0001)

Unless freq is supplied, the function will automatically calculate the round-robin allele frequencies
with rraf and G with nmll.

psex 111

Value

a vector of Psex for each sample.

Note

The values of Psex represent the value for each multilocus genotype. Additionally, when the argu-
ment pop is not NULL, by_pop is automatically TRUE.

Author(s)

Zhian N. Kamvar, Jonah Brooks, Stacy A. Krueger-Hadfield, Erik Sotka

References

Arnaud-Haond, S., Duarte, C. M., Alberto, F., & Serrão, E. A. 2007. Standardizing methods to
address clonality in population studies. Molecular Ecology, 16(24), 5115-5139.

Parks, J. C., & Werth, C. R. 1993. A study of spatial features of clones in a population of bracken
fern, Pteridium aquilinum (Dennstaedtiaceae). American Journal of Botany, 537-544.

See Also

pgen, rraf, rrmlg, rare_allele_correction

Examples

data(Pram)

With multiple encounters
Pram_psex <- psex(Pram, by_pop = FALSE, method = "multiple")
plot(Pram_psex, log = "y", col = ifelse(Pram_psex > 0.05, "red", "blue"))
abline(h = 0.05, lty = 2)
title("Probability of multiple encounters")
Not run:

For a single encounter (default)
Pram_psex <- psex(Pram, by_pop = FALSE)
plot(Pram_psex, log = "y", col = ifelse(Pram_psex > 0.05, "red", "blue"))
abline(h = 0.05, lty = 2)
title("Probability of second encounter")

This can be also done assuming populations structure
Pram_psex <- psex(Pram, by_pop = TRUE, method = "multiple")
plot(Pram_psex, log = "y", col = ifelse(Pram_psex > 0.05, "red", "blue"))
abline(h = 0.05, lty = 2)
title("Probability of multiple encounters\nwith pop structure")

The above, but correcting zero-value alleles by 1/(2*rrmlg) with no
population structure assumed
Type ?rare_allele_correction for details.
Pram_psex2 <- psex(Pram, by_pop = FALSE, d = "rrmlg", mul = 1/2, method = "multiple")
plot(Pram_psex2, log = "y", col = ifelse(Pram_psex2 > 0.05, "red", "blue"))

112 psex

abline(h = 0.05, lty = 2)
title("Probability of multiple encounters\nwith pop structure (1/(2*rrmlg))")

We can also set G to the total population size
(G <- nInd(Pram))
Pram_psex <- psex(Pram, by_pop = TRUE, method = "multiple", G = G)
plot(Pram_psex, log = "y", col = ifelse(Pram_psex > 0.05, "red", "blue"))
abline(h = 0.05, lty = 2)
title("Probability of multiple encounters\nwith pop structure G = 729")

Or we can set G to the number of unique MLGs
(G <- rowSums(mlg.table(Pram, plot = FALSE) > 0))
Pram_psex <- psex(Pram, by_pop = TRUE, method = "multiple", G = G)
plot(Pram_psex, log = "y", col = ifelse(Pram_psex > 0.05, "red", "blue"))
abline(h = 0.05, lty = 2)
title("Probability of multiple encounters\nwith pop structure G = nmll")

An example of supplying previously calculated frequencies and G
From Parks and Werth, 1993, using the first three genotypes.

The row names indicate the number of samples found with that genotype
x <- "
Hk Lap Mdh2 Pgm1 Pgm2 X6Pgd2

54 12 12 12 23 22 11
36 22 22 11 22 33 11
10 23 22 11 33 13 13"

Since we aren't representing the whole data set here, we are defining the
allele frequencies before the analysis.
afreq <- c(Hk.1 = 0.167, Hk.2 = 0.795, Hk.3 = 0.038,

Lap.1 = 0.190, Lap.2 = 0.798, Lap.3 = 0.012,
Mdh2.0 = 0.011, Mdh2.1 = 0.967, Mdh2.2 = 0.022,
Pgm1.2 = 0.279, Pgm1.3 = 0.529, Pgm1.4 = 0.162, Pgm1.5 = 0.029,
Pgm2.1 = 0.128, Pgm2.2 = 0.385, Pgm2.3 = 0.487,
X6Pgd2.1 = 0.526, X6Pgd2.2 = 0.051, X6Pgd2.3 = 0.423)

xtab <- read.table(text = x, header = TRUE, row.names = 1)

Here we are expanding the number of samples to their observed values.
Since we have already defined the allele frequencies, this step is actually
not necessary.
all_samples <- rep(rownames(xtab), as.integer(rownames(xtab)))
xgid <- df2genind(xtab[all_samples,], ncode = 1)

freqs <- afreq[colnames(tab(xgid))] # only used alleles in the sample
pSex <- psex(xgid, by_pop = FALSE, freq = freqs, G = 45)

Note, pgen returns log values for each locus, here we take the sum across
all loci and take the exponent to give us the value of pgen for each sample
pGen <- exp(rowSums(pgen(xgid, by_pop = FALSE, freq = freqs)))

res <- matrix(c(unique(pGen), unique(pSex)), ncol = 2)
colnames(res) <- c("Pgen", "Psex")

rare_allele_correction 113

res <- cbind(xtab, nRamet = rownames(xtab), round(res, 5))
rownames(res) <- 1:3
res # Compare to the first three rows of Table 2 in Parks & Werth, 1993

End(Not run)

rare_allele_correction

Correcting rare allele frequencies

Description

The following is a set of arguments for use in rraf, pgen, and psex to correct rare allele frequencies
that were lost in estimating round-robin allele frequencies.

Arguments

e a numeric epsilon value to use for all missing allele frequencies.

d the unit by which to take the reciprocal. div = "sample" will be 1/(n samples),
d = "mlg" will be 1/(n mlg), and d = "rrmlg" will be 1/(n mlg at that locus).
This is overridden by e.

mul a multiplier for div. Default is mul = 1. This parameter is overridden by e

sum_to_one when TRUE, the original frequencies will be reduced so that all allele frequencies
will sum to one. Default: FALSE

Details

By default (d = "sample", e = NULL, sum_to_one = FALSE, mul = 1), this will add 1/(n samples)
to all zero-value alleles. The basic formula is 1/(d * m) unless e is specified. If sum_to_one =
TRUE, then the frequencies will be scaled as x/sum(x) AFTER correction, indicating that the allele
frequencies will be reduced. See the examples for details. The general pattern of correction is that
the value of the MAF will be rrmlg > mlg > sample

Motivation

When calculating allele frequencies from a round-robin approach, rare alleles are often lost resulting
in zero-valued allele frequencies (Arnaud-Haond et al. 2007, Parks and Werth 1993). This can be
problematic when calculating values for pgen and psex because frequencies of zero will result in
undefined values for samples that contain those rare alleles. The solution to this problem is to give
an estimate for the frequency of those rare alleles, but the question of HOW to do that arises. These
arguments provide a way to define how rare alleles are to be estimated/corrected.

114 rare_allele_correction

Using these arguments

These arguments are for use in the functions rraf, pgen, and psex. They will replace the dots
(...) that appear at the end of the function call. For example, if you want to set the minor allele
frequencies to a specific value (let’s say 0.001), regardless of locus, you can insert e = 0.001 along
with any other arguments (note, position is not specific):

pgen(my_data, e = 0.001, log = FALSE)
psex(my_data, method = "multiple", e = 0.001)

Author(s)

Zhian N. Kamvar

References

Arnaud-Haond, S., Duarte, C. M., Alberto, F., & Serrão, E. A. 2007. Standardizing methods to
address clonality in population studies. Molecular Ecology, 16(24), 5115-5139.

Parks, J. C., & Werth, C. R. 1993. A study of spatial features of clones in a population of bracken
fern, Pteridium aquilinum (Dennstaedtiaceae). American Journal of Botany, 537-544.

See Also

rraf, pgen, psex, rrmlg

Examples

Not run:

data(Pram)
#-------------------------------------

If you set correction = FALSE, you'll notice the zero-valued alleles

rraf(Pram, correction = FALSE)

By default, however, the data will be corrected by 1/n

rraf(Pram)

Of course, this is a diploid organism, we might want to set 1/2n

rraf(Pram, mul = 1/2)

To set MAF = 1/2mlg

rraf(Pram, d = "mlg", mul = 1/2)

Another way to think about this is, since these allele frequencies were
derived at each locus with different sample sizes, it's only appropriate to
correct based on those sample sizes.

read.genalex 115

rraf(Pram, d = "rrmlg", mul = 1/2)

If we were going to use these frequencies for simulations, we might want to
ensure that they all sum to one.

rraf(Pram, d = "mlg", mul = 1/2, sum_to_one = TRUE)

#-------------------------------------
When we calculate these frequencies based on population, they are heavily
influenced by the number of observed mlgs.

rraf(Pram, by_pop = TRUE, d = "rrmlg", mul = 1/2)

This can be fixed by specifying a specific value

rraf(Pram, by_pop = TRUE, e = 0.01)

End(Not run)

read.genalex Importing data from genalex formatted *.csv files.

Description

read.genalex will read in a genalex-formatted file that has been exported in a comma separated
format and will parse most types of genalex data. The output is a genclone-class or genind-class
object.

Usage

read.genalex(
genalex,
ploidy = 2,
geo = FALSE,
region = FALSE,
genclone = TRUE,
sep = ",",
recode = FALSE

)

Arguments

genalex a *.csv file exported from genalex

ploidy an integer to indicate the ploidy of the dataset

geo indicates the presence of geographic data in the file. This data will be included
in a data frame labeled xy in the other() slot.

region indicates the presence of regional data in the file.

116 read.genalex

genclone when TRUE (default), the output will be a genclone object. When FALSE, the
output will be a genind object

sep A character specifying the column separator of the data. Defaults to ",".

recode For polyploid data: Do you want to recode your data to have varying ploidy?
Default is FALSE, and the data will be returned with even ploidy where miss-
ing alleles are coded as "0". When TRUE, the data is run through the function
recode_polyploids() before being returned. Note that this will prevent con-
version to genpop objects in the future. See details.

Details

The resulting genclone-class or genind-class object will have a single strata defined in the strata
slot. This will be called "Pop" and will reflect the population factor defined in the genalex input. If
region = TRUE, a second column will be inserted and labeled "Region". If you have more than two
strata within your data set, you should run the command adegenet::splitStrata() on your data
set to define the unique stratifications.

FOR POLYPLOID (> 2n) DATA SETS: The genind object has an all-or-none approach to
missing data. If a sample has missing data at a particular locus, then the entire locus is considered
missing. This works for diploids and haploids where allelic dosage is unambiguous. For poly-
ploids this poses a problem as much of the data set would be transformed into missing data. With
this function, I have created a workaround.
When importing polyploid data sets, missing data is scored as "0" and kept within the genind
object as an extra allele. This will break most analyses relying on allele frequencies*. All of
the functions in poppr will work properly with these data sets as multilocus genotype analysis is
agnostic of ploidy and we have written both Bruvo’s distance and the index of association in such
a way as to be able to handle polyploids presented in this manner.
* To restore functionality of analyses relying on allele frequencies, use the recode_polyploids()
function.

Value

A genclone or genind bject.

Note

This function cannot handle raw allele frequency data.

In the case that there are duplicated names within the file, this function will assume separate in-
dividuals and rename each one to a sequence of integers from 1 to the number of individuals. A
vector of the original names will be saved in the other slot under original_names.

Author(s)

Zhian N. Kamvar

See Also

genind2genalex(), clonecorrect(), genclone, genind, recode_polyploids()

recode_polyploids 117

Examples

Not run:
Aeut <- read.genalex(system.file("files/rootrot.csv", package="poppr"))

genalex2 <- read.genalex("genalex2.csv", geo=TRUE)
A genalex file with geographic coordinate data.

genalex3 <- read.genalex("genalex3.csv", region=TRUE)
A genalex file with regional information.

genalex4 <- read.genalex("genalex4.csv", region=TRUE, geo=TRUE)
A genalex file with both regional and geographic information.

End(Not run)

recode_polyploids Recode polyploid microsatellite data for use in frequency based statis-
tics.

Description

As the genind object requires ploidy to be consistent across loci, a workaround to importing poly-
ploid data was to code missing alleles as "0" (for microsatellite data sets). The advantage of this
is that users would be able to calculate Bruvo’s distance, the index of association, and genotypic
diversity statistics. The tradeoff was the fact that this broke all other analyses as they relied on allele
frequencies and the missing alleles are treated as extra alleles. This function removes those alleles
and returns a genclone or genind object where allele frequencies are coded based on the number
of alleles observed at a single locus per individual. See the examples for more details.

Usage

recode_polyploids(poly, newploidy = FALSE, addzero = FALSE)

Arguments

poly a genclone, genind, or genpop object that has a ploidy of > 2

newploidy for genind or genclone objects: if FALSE (default), the user-defined ploidy will
stay constant. if TRUE, the ploidy for each sample will be determined by the
maximum ploidy observed for each genotype.

addzero add zeroes onto genind or genclone objects with uneven ploidy? if TRUE, objects
with uneven ploidies will have zeroes appended to all loci to allow conversion
to genpop objects. Defaults to FALSE.

118 recode_polyploids

Details

The genind object has two caveats that make it difficult to work with polyploid data sets:

1. ploidy must be constant throughout the data set

2. missing data is treated as "all-or-none"

In an ideal world, polyploid genotypes would be just as unambiguous as diploid or haploid geno-
types. Unfortunately, the world we live in is far from ideal and a genotype of AB in a tetraploid
organism could be AAAB, AABB, or ABBB. In order to get polyploid data in to adegenet or
poppr, we must code all loci to have the same number of allelic states as the ploidy or largest ob-
served heterozygote (if ploidy is unknown). The way to do this is to insert zeroes to pad the alleles.
So, to import two genotypes of:

NA 20 23 24
20 24 26 43

they should be coded as:

0 20 23 24
20 24 26 43

This zero is treated as an extra allele and is represented in the genind object as so:

0 20 23 24 26 43
1 1 1 1 0 0
0 1 0 1 1 1

This function remedies this problem by removing the zero column. The above table would become:

20 23 24 26 43
1 1 1 0 0
1 0 1 1 1

With this, the user is able to calculate frequency based statistics on the data set.

Value

a genclone, genind, or genpop object.

Note

This is an approximation, and a bad one at that. Poppr was not originally intended for polyploids,
but with the inclusion of Bruvo’s distance, it only made sense to attempt something beyond single
use.

Author(s)

Zhian N. Kamvar

rraf 119

Examples

data(Pinf)
iPinf <- recode_polyploids(Pinf)

Note that the difference between the number of alleles.
nAll(Pinf)
nAll(iPinf)

Not run:
library("ape")

Removing missing data.
setPop(Pinf) <- ~Country

Calculating Rogers' distance.
rog <- rogers.dist(genind2genpop(Pinf))
irog <- rogers.dist(recode_polyploids(genind2genpop(Pinf)))

We will now plot neighbor joining trees. Note the decreased distance in the
original data.
plot(nj(rog), type = "unrooted")
add.scale.bar(lcol = "red", length = 0.02)
plot(nj(irog), type = "unrooted")
add.scale.bar(lcol = "red", length = 0.02)

End(Not run)

rraf Round Robin Allele Frequencies

Description

This function utilizes rrmlg to calculate multilocus genotypes and then subsets each locus by the
resulting MLGs to calculate the round-robin allele frequencies used for pgen and psex.

Usage

rraf(gid, pop = NULL, res = "list", by_pop = FALSE, correction = TRUE, ...)

Arguments

gid a genind or genclone object

pop either a formula to set the population factor from the strata slot or a vector
specifying the population factor for each sample. Defaults to NULL.

res either "list" (default), "vector", or "data.frame".

by_pop When this is TRUE, the calculation will be done by population. Defaults to FALSE

correction a logical indicating whether or not zero-valued allele frequencies should be cor-
rected using the methods outlined in correcting rare alleles. (Default: TRUE)

120 rraf

... options from correcting rare alleles. The default is to correct allele frequencies
to 1/n

Details

Calculating allele frequencies for clonal populations is a difficult task. Frequencies calculated on
non-clone-corrected data suffer from bias due to non-independent samples. On the other hand,
frequencies calculated on clone-corrected data artificially increases the significance of rare alleles.
The method of round-robin allele frequencies as presented in Parks and Werth (1993) provides a
method of calculating allele frequencies in a way that minimizes both of these effects.

Rare Alleles: Allele frequencies at a given locus are calculated based on samples that are clone
corrected without that locus. When this happens, rare alleles have a high likelihood of dropping
out, giving them a frequency of "0". For some analyses, this is a perfectly fine outcome, but
for analyses such as pgen and psex, this could result in undefined values. Setting correction =
TRUE will allow you to control how these zero-valued allele frequencies are corrected. For details,
please see the documentation on correcting rare alleles and examples.

Value

a vector or list of allele frequencies

Note

When by_pop = TRUE, the output will be a matrix of allele frequencies. Additionally, when the
argument pop is not NULL, by_pop is automatically TRUE.

Author(s)

Zhian N. Kamvar, Jonah Brooks, Stacy A. Krueger-Hadfield, Erik Sotka

References

Arnaud-Haond, S., Duarte, C. M., Alberto, F., & Serrão, E. A. 2007. Standardizing methods to
address clonality in population studies. Molecular Ecology, 16(24), 5115-5139.

Parks, J. C., & Werth, C. R. 1993. A study of spatial features of clones in a population of bracken
fern, Pteridium aquilinum (Dennstaedtiaceae). American Journal of Botany, 537-544.

See Also

rrmlg, pgen, psex, rare_allele_correction

Examples

data(Pram)

Round robin allele frequencies, correcting zero-valued frequencies to 1/nInd(Pram)
rraf(Pram)

Not run:

rrmlg 121

Round robin allele frequencies will be different than observed

Compare to without round robin:
PrLoc <- seploc(Pram, res = "mat") # get locus by matrix
lapply(PrLoc, colMeans, na.rm = TRUE)

Without round robin, clone corrected:
Pcc <- clonecorrect(Pram, strata = NA) # indiscriminantly clone correct
PccLoc <- seploc(Pcc, res = "mat")
lapply(PccLoc, colMeans, na.rm = TRUE)

Different methods of obtaining round robin allele frequencies

Get vector output.
rraf(Pram, res = "vector")

Getting the output as a data frame allows us to use ggplot2 to visualize
(Prdf <- rraf(Pram, res = "data.frame"))
library("ggplot2")
ggplot(Prdf, aes(y = allele, x = frequency)) +

geom_point() +
facet_grid(locus ~ ., scale = "free_y", space = "free")

Round Robin allele frequencies by population (matrix only)

By default, allele frequencies will be corrected by 1/n per population
(Prbp <- rraf(Pram, by_pop = TRUE))

This might be problematic because populations like PistolRSF_OR has a
population size of four.

By using the 'e' argument to rare_allele_correction, this can be set to a
more reasonable value.
(Prbp <- rraf(Pram, by_pop = TRUE, e = 1/nInd(Pram)))

End(Not run)

rrmlg Round Robin Multilocus Genotypes

Description

This function will mask each locus one by one and then calculate multilocus genotypes from the re-
maining loci in a round-robin fashion. This is used for calculating the round robin allele frequencies
for pgen and psex.

122 rrmlg

Usage

rrmlg(gid)

Arguments

gid a genind, genclone, or loci object.

Value

a matrix of multilocus genotype assignments by masked locus. There will be n rows and m columns
where n = number of samples and m = number of loci.

Author(s)

Zhian N. Kamvar, Jonah Brooks, Stacy A. Krueger-Hadfield, Erik Sotka

References

Arnaud-Haond, S., Duarte, C. M., Alberto, F., & Serrão, E. A. 2007. Standardizing methods to
address clonality in population studies. Molecular Ecology, 16(24), 5115-5139.

Parks, J. C., & Werth, C. R. 1993. A study of spatial features of clones in a population of bracken
fern, Pteridium aquilinum (Dennstaedtiaceae). American Journal of Botany, 537-544.

See Also

rraf, pgen, psex

Examples

Find out the round-robin multilocus genotype assignments for P. ramorum
data(Pram)
pmlg_rr <- rrmlg(Pram)
head(pmlg_rr)
Not run:
You can find out how many unique genotypes are found without each locus:

colSums(!apply(pmlg_rr, 2, duplicated))

End(Not run)

samp.ia 123

samp.ia Calculate random samples of the index of association for genlight ob-
jects.

Description

Genlight objects can contain millions of loci. Since it does not make much sense to calculate the
index of association over that many loci, this function will randomly sample sites to calculate the
index of association.

Usage

samp.ia(x, n.snp = 100L, reps = 100L, threads = 1L, quiet = FALSE)

Arguments

x a [genlight][genlight-class] or [snpclone][snpclone-class] object.
n.snp the number of snps to be used to calculate standardized index of association.
reps the number of times to perform the calculation.
threads The maximum number of parallel threads to be used within this function. A

value of 0 (default) will attempt to use as many threads as there are available
cores/CPUs. In most cases this is ideal. A value of 1 will force the function to
run serially, which may increase stability on some systems. Other values may
be specified, but should be used with caution.

quiet if ‘FALSE‘, a progress bar will be printed to the screen.

Details

The index of association is a summary of linkage disequilibrium among many loci. More infor-
mation on the index of association can be found associated with the funciton [ia()]. A value near
or at zero indicator of linkage equilibrium, whereas values significantly greater than zero indicate
linkage disequilibrium. However, if the observed variance in distance among individuals is less
than the expected, mildly negative values may be observed (as the range of this index is negative
one to one). This function will call the function [bitwise.ia()] for ‘reps‘ times to calculate the index
of association over ‘n.snp‘ loci. The standardized index of association (’rbarD’) will be calculated
‘reps‘ times. These esitmates of linkage disequilibrium from random genomic fractions can then be
summarized (e.g., using a histogram) as an estimate of genome-wide linkage disequilibrium.

This function currently only works for objects of class genlight or snpclone that are of a single
ploidy level and that ploidy is either haploid or diploid.

Value

Index of association representing the samples in this genlight object.

Note

this will calculate the standardized index of association from Agapow 2001. See [ia()] for details.

124 shufflepop

Author(s)

Zhian N. Kamvar, Jonah C. Brooks

See Also

[genlight][genlight-class], [snpclone][snpclone-class], [win.ia()], [ia()], [bitwise.dist()] [bitwise.ia()]

Examples

with structured snps assuming 1e4 positions
set.seed(999)
x <- glSim(n.ind = 10, n.snp.nonstruc = 5e2,

n.snp.struc = 5e2, ploidy = 2,
parallel = FALSE)

position(x) <- sort(sample(1e4, 1e3))
res <- samp.ia(x)
hist(res, breaks = "fd")

with unstructured snps assuming 1e4 positions
set.seed(999)
x <- glSim(n.ind = 10, n.snp.nonstruc = 1e3, ploidy = 2)
position(x) <- sort(sample(1e4, 1e3))
res <- samp.ia(x)
hist(res, breaks = "fd")

shufflepop Shuffle individuals in a genclone or genind object independently over
each locus.

Description

Shuffle individuals in a genclone or genind object independently over each locus.

Usage

shufflepop(pop, method = 1)

Arguments

pop a genclone or genind object

method an integer between 1 and 4. See details below.

Details

This function will shuffle each locus in the data set independently of one another, rendering them
essentially unlinked. The following methods are available to shuffle your data:

1. Permute Alleles This will redistribute all alleles in the sample throughout the locus. Missing
data is fixed in place. This maintains allelic structure, but heterozygosity is variable.

shufflepop 125

2. Parametric Bootstrap This will redistribute available alleles within the locus based on their
allelic frequencies. This means that both the allelic state and heterozygosity will vary. The
resulting data set will not have missing data.

3. Non-Parametric Bootstrap This will shuffle the allelic state for each individual. Missing
data is fixed in place.

4. Multilocus Style Permutation This will shuffle the genotypes at each locus, maintaining the
heterozygosity and allelic structure.

Value

a genclone or genind object shuffled by a specified method

Author(s)

Zhian N. Kamvar

References

Paul-Michael Agapow and Austin Burt. 2001. Indices of multilocus linkage disequilibrium. Molec-
ular Ecology Notes, 1(1-2):101-102

Examples

load the microbov dataset
data(microbov)
Let's look at a single population for now. Howsabout Zebu
Zebu <- popsub(microbov, "Zebu")
summary(Zebu)

Take note of the Number of alleles per population and the Observed
heterozygosity as we go through each method.

Permute Alleles: maintain allelic state; heterozygosity varies.
summary(shufflepop(Zebu, method=1))
Not run:
Parametric Bootstrap: do not maintain allelic state or heterozygosity
summary(shufflepop(Zebu, method=2))

Non-Parametric Bootstrap: do not maintain allelic state or heterozygosity.
summary(shufflepop(Zebu, method=3))

Multilocus Style: maintain allelic state and heterozygosity.
summary(shufflepop(Zebu, method=4))

End(Not run)

126 test_replen

test_replen Test repeat length consistency.

Description

This function will test for consistency in the sense that all alleles are able to be represented as
discrete units after division and rounding.

Usage

test_replen(gid, replen)

Arguments

gid a genind or genclone object

replen a numeric vector of repeat motif lengths.

Details

This function is modified from the version used in doi:10.5281/zenodo.13007.

Value

a logical vector indicating whether or not the repeat motif length is consistent.

Author(s)

Zhian N. Kamvar

References

Zhian N. Kamvar, Meg M. Larsen, Alan M. Kanaskie, Everett M. Hansen, & Niklaus J. Grünwald.
Sudden_Oak_Death_in_Oregon_Forests: Spatial and temporal population dynamics of the sudden
oak death epidemic in Oregon Forests. ZENODO, doi:10.5281/zenodo.13007, 2014.

Kamvar, Z. N., Larsen, M. M., Kanaskie, A. M., Hansen, E. M., & Grünwald, N. J. (2015). Spatial
and temporal analysis of populations of the sudden oak death pathogen in Oregon forests. Phy-
topathology 105:982-989. doi: doi:10.1094/PHYTO12140350FI

Ruzica Bruvo, Nicolaas K. Michiels, Thomas G. D’Souza, and Hinrich Schulenburg. A simple
method for the calculation of microsatellite genotype distances irrespective of ploidy level. Molec-
ular Ecology, 13(7):2101-2106, 2004.

See Also

fix_replen bruvo.dist bruvo.msn bruvo.boot

https://doi.org/10.5281/zenodo.13007
https://doi.org/10.5281/zenodo.13007
https://doi.org/10.1094/PHYTO-12-14-0350-FI

upgma 127

Examples

data(Pram)
(Pram_replen <- setNames(c(3, 2, 4, 4, 4), locNames(Pram)))
test_replen(Pram, Pram_replen)

upgma UPGMA

Description

UPGMA clustering. Just a wrapper function around hclust.

Usage

upgma(d)

Arguments

d A distance matrix.

Value

A phylogenetic tree of class phylo.

Author(s)

Klaus Schliep <klaus.schliep@gmail.com>

See Also

hclust, as.phylo

Examples

library(ape)
data(woodmouse)
dm <- dist.dna(woodmouse)
tree <- upgma(dm)
plot(tree)

128 win.ia

win.ia Calculate windows of the index of association for genlight objects.

Description

Genlight objects can contain millions of loci. Since it does not make much sense to calculate the
index of association over that many loci, this function will scan windows across the loci positions
and calculate the index of association.

Usage

win.ia(
x,
window = 100L,
min.snps = 3L,
threads = 1L,
quiet = FALSE,
name_window = TRUE,
chromosome_buffer = TRUE

)

Arguments

x a genlight or snpclone object.

window an integer specifying the size of the window.

min.snps an integer specifying the minimum number of snps allowed per window. If a
window does not meet this criteria, the value will return as NA.

threads The maximum number of parallel threads to be used within this function. De-
faults to 1 thread, in which the function will run serially. A value of 0 will
attempt to use as many threads as there are available cores/CPUs. In most cases
this is ideal for speed. Note: this option is passed to bitwise.ia() and does
not parallelize the windowization process.

quiet if FALSE (default), a progress bar will be printed to the screen.

name_window if TRUE (default), the result vector will be named with the terminal position of the
window. In the case where several chromosomes are represented, the position
will be appended using a period/full stop.

chromosome_buffer

DEPRECATED if TRUE (default), buffers will be placed between adjacent chro-
mosomal positions to prevent windows from spanning two chromosomes.

Value

A value of the standardized index of association for all windows in each chromosome.

win.ia 129

Note

this will calculate the standardized index of association from Agapow and Burt, 2001. See ia() for
details.

Author(s)

Zhian N. Kamvar, Jonah C. Brooks

See Also

genlight, snpclone, ia(), samp.ia(), bitwise.dist()

Examples

with structured snps assuming 1e4 positions
set.seed(999)
x <- glSim(n.ind = 10, n.snp.nonstruc = 5e2, n.snp.struc = 5e2, ploidy = 2)
position(x) <- sort(sample(1e4, 1e3))
res <- win.ia(x, window = 300L) # Calculate for windows of size 300
plot(res, type = "l")

Not run:

unstructured snps
set.seed(999)
x <- glSim(n.ind = 10, n.snp.nonstruc = 1e3, ploidy = 2)
position(x) <- sort(sample(1e4, 1e3))
res <- win.ia(x, window = 300L) # Calculate for windows of size 300
plot(res, type = "l")

Accounting for chromosome coordinates
set.seed(999)
x <- glSim(n.ind = 10, n.snp.nonstruc = 5e2, n.snp.struc = 5e2, ploidy = 2)
position(x) <- as.vector(vapply(1:10, function(x) sort(sample(1e3, 100)), integer(100)))
chromosome(x) <- rep(1:10, each = 100)
res <- win.ia(x, window = 100L)
plot(res, type = "l")

Converting chromosomal coordinates to tidy data
library("dplyr")
library("tidyr")
res_tidy <- res %>%

tibble(rd = ., chromosome = names(.)) %>% # create two column data frame
separate(chromosome, into = c("chromosome", "position")) %>% # get the position info
mutate(position = as.integer(position)) %>% # force position as integers
mutate(chromosome = factor(chromosome, unique(chromosome))) # force order chromosomes

res_tidy

Plotting with ggplot2
library("ggplot2")
ggplot(res_tidy, aes(x = position, y = rd, color = chromosome)) +

geom_line() +

130 win.ia

facet_wrap(~chromosome, nrow = 1) +
ylab(expression(bar(r)[d])) +
xlab("terminal position of sliding window") +
labs(caption = "window size: 100bp") +
theme(axis.text.x = element_text(angle = 90, hjust = 1, vjust = 0.5)) +
theme(legend.position = "top")

End(Not run)

Index

∗ amova
poppr.amova, 96

∗ angular
nei.dist, 80

∗ bootstrap
aboot, 8

∗ cluster
upgma, 127

∗ coancestry
nei.dist, 80

∗ datasets
nei.dist, 80

∗ edwards
nei.dist, 80

∗ missing
info_table, 60

∗ nei
nei.dist, 80

∗ ploidy
info_table, 60

∗ provesti
nei.dist, 80

∗ reynolds
nei.dist, 80

∗ rodgers
nei.dist, 80

∗ rogers
nei.dist, 80

aboot, 8, 17, 66, 81
aboot(), 4, 5
ade4::amova(), 96, 98, 100
ade4::cailliez(), 97
ade4::is.euclid(), 100
ade4::lingoes(), 97
ade4::quasieuclid(), 97
adegenet, 3, 4
adegenet::dist.genpop(), 10
adegenet::genind, 62, 68, 91, 107
adegenet::genind(), 9, 51

adegenet::genlight, 68
adegenet::genpop(), 9
adegenet::popNames(), 91
adegenet::splitStrata(), 116
adegenet::strata(), 108
Aeut, 11
Aeut(), 7
amova, 64
amova (poppr.amova), 96
ape::boot.phylo(), 9, 10
ape::is.ultrametric(), 9
ape::phylo(), 9
as.genambig (bootgen2genind), 16
as.genambig(), 4, 64, 99, 100
as.genambig,genind-method

(bootgen2genind), 16
as.genclone, 43
as.genclone (bootgen2genind), 16
as.genclone(), 5
as.genclone,genind-method

(bootgen2genind), 16
as.phylo, 127
as.snpclone, 12, 43
as.snpclone,genlight-method

(as.snpclone), 12

bitwise.dist, 13, 32, 40, 43, 68, 72
bitwise.dist(), 5, 98, 129
bitwise.ia(), 128
boot.ia, 15
boot.phylo, 19
boot::boot(), 33–36
boot::boot.ci(), 35, 36
boot::norm.ci(), 35, 36
bootgen, 4, 9, 10
bootgen2genind, 16
bootgen2genind(), 4, 10
bootgen2genind,bootgen-method

(bootgen2genind), 16
bootstrap (aboot), 8

131

132 INDEX

bruvo.between (bruvo.dist), 20
bruvo.boot, 18, 23, 27, 42, 126
bruvo.boot(), 5, 10
bruvo.dist, 19, 20, 26, 27, 42, 56, 73, 126
bruvo.dist(), 5
bruvo.msn, 23, 24, 42, 56, 86, 88, 103, 126
bruvo.msn(), 7
bruvomat, 4

cailliez(), 99
calculating allele frequencies from a

round-robin approach, 113
clonecorrect, 28
clonecorrect(), 5, 45, 54, 92, 94, 97, 100,

116
correcting rare alleles, 83, 109, 119, 120
cutoff_predictor, 30, 40, 73
cutoff_predictor(), 6

delete_edges, 88
diss.dist, 31, 40, 56, 72, 73, 81
diss.dist(), 5, 9, 10, 14, 100
dist, 22
dist(), 10, 14, 97
dist.genpop, 80, 81
diversity_boot, 32
diversity_boot(), 5, 35, 36, 38
diversity_ci, 34
diversity_ci(), 5, 34, 38, 92, 94
diversity_stats, 37, 69
diversity_stats(), 6, 33–36, 92, 94

edwards.dist (nei.dist), 80
edwards.dist(), 5, 10

file.choose(), 48
file.copy(), 45
file.path(), 48
filter_stats, 30, 39, 73
filter_stats(), 6
fix_replen, 21, 23, 41, 126
fix_replen(), 5
formula, 97
formula(), 107

gen-class, 4
genambig, 4
genclone, 3, 4, 14, 17, 18, 21, 24, 26, 28, 39,

41, 44–46, 58, 60–62, 65, 66, 68, 72,

73, 75–77, 80, 86, 91, 97, 98, 101,
103, 105, 107, 116–118, 124–126

genclone (genclone-class), 43
genclone(), 35, 51
genclone-class, 8, 43, 115, 116
genclone2genind (bootgen2genind), 16
genclone2genind(), 4
genclone2genind,genclone-method

(bootgen2genind), 16
genind, 3, 4, 14, 17, 18, 21, 24, 28, 31, 39, 41,

43–46, 58, 60–62, 64–66, 72, 80, 81,
86, 97, 98, 101, 105, 116–118,
124–126

genind(), 35
genind-class, 8, 115, 116
genind2genalex, 44
genind2genalex(), 4, 116
genlight, 3, 4, 8, 12–14, 39, 43, 62, 64, 86,

97, 98, 101, 105, 128, 129
genotype_curve, 46
genotype_curve(), 7
genpop, 117, 118
genpop-class, 8
getfile, 48
getfile(), 4
ggplot, 68
gray, 25, 49, 86, 102
greycurve, 25, 27, 49, 86, 88, 102, 103
greycurve(), 7

hclust, 127
hist, 40

ia, 31, 50
ia(), 6, 16, 51, 93, 94, 129
import2genind(), 54
imsn, 55
imsn(), 6
incomp, 57
incomp(), 6
info_table, 60
info_table(), 7
informloci, 58
informloci(), 5
is.clone (is.snpclone), 61
is.genclone (is.snpclone), 61
is.snpclone, 61
isPoly, 58, 59

INDEX 133

jack.ia (ia), 50
jack.ia(), 52, 54

last_plot(), 93
layout.auto, 87, 88
legend, 88
lingoes(), 99
list.files(), 48
loci, 46, 47
locus_table, 62
locus_table(), 6

make_haplotypes, 64
make_haplotypes(), 5, 99, 100
make_haplotypes,ANY-method

(make_haplotypes), 64
make_haplotypes,genclone-method

(make_haplotypes), 64
make_haplotypes,genind-method

(make_haplotypes), 64
make_haplotypes,genlight-method

(make_haplotypes), 64
make_haplotypes,snpclone-method

(make_haplotypes), 64
matrix, 8
minimum.spanning.tree, 26, 102
missingno, 19, 56, 65, 72, 103
missingno(), 5, 9, 10, 51, 54, 92, 94, 98, 100
MLG, 4, 12, 43, 76
mlg, 67
mlg(), 5, 93, 94
mlg.crosspop(), 5
mlg.filter, 25, 26, 30, 39, 40, 43, 47, 68, 69,

71, 102
mlg.filter(), 6, 98, 99
mlg.filter,genclone-method

(mlg.filter), 71
mlg.filter,genind-method (mlg.filter),

71
mlg.filter,genlight-method

(mlg.filter), 71
mlg.filter,snpclone-method

(mlg.filter), 71
mlg.filter<- (mlg.filter), 71
mlg.filter<-,genclone-method

(mlg.filter), 71
mlg.filter<-,genind-method

(mlg.filter), 71

mlg.filter<-,genlight-method
(mlg.filter), 71

mlg.filter<-,snpclone-method
(mlg.filter), 71

mlg.id(), 6
mlg.table, 76–78, 105
mlg.table(), 4, 6, 33, 35
mlg.vector(), 6
mll, 43, 69, 73, 75, 77, 78
mll(), 5
mll,genclone-method (mll), 75
mll,genind-method (mll), 75
mll,genlight-method (mll), 75
mll,snpclone-method (mll), 75
mll.custom, 25, 47, 69, 76, 76, 78, 86, 101
mll.custom(), 6
mll.custom,genclone-method

(mll.custom), 76
mll.custom,snpclone-method

(mll.custom), 76
mll.custom<- (mll.custom), 76
mll.custom<-,genclone-method

(mll.custom), 76
mll.custom<-,snpclone-method

(mll.custom), 76
mll.levels (mll.custom), 76
mll.levels(), 6
mll.levels,genclone-method

(mll.custom), 76
mll.levels,snpclone-method

(mll.custom), 76
mll.levels<- (mll.custom), 76
mll.levels<-,genclone-method

(mll.custom), 76
mll.levels<-,snpclone-method

(mll.custom), 76
mll.reset, 77
mll.reset(), 6
mll.reset,genclone-method (mll.reset),

77
mll.reset,snpclone-method (mll.reset),

77
mll<- (mll), 75
mll<-,genclone-method (mll), 75
mll<-,snpclone-method (mll), 75
monpop, 79
monpop(), 7
msn.bruvo (bruvo.msn), 24

134 INDEX

msn.poppr (poppr.msn), 101
mst, 27

nancycats, 19, 27, 103
nei.dist, 56, 66, 80
nei.dist(), 5, 9, 10
nj, 19, 103
nmll, 110
nmll (mll), 75
nmll(), 5
nmll,genclone-method (mll), 75
nmll,genind-method (mll), 75
nmll,genlight-method (mll), 75
nmll,snpclone-method (mll), 75
nodelabels, 19, 103

old2new_genclone, 82
old_partial_clone (partial_clone), 82
old_Pinf (Pinf), 85
other slot, 64
other(), 115

pair.ia (ia), 50
pair.ia(), 6, 16, 51, 53
palette, 88
partial_clone, 82
partial_clone(), 7
pegas::amova(), 64, 96, 100
pgen, 83, 110, 111, 113, 114, 120, 122
pgen(), 6
Pinf, 85
Pinf(), 7
plot.igraph, 87, 88
plot_poppr_msn, 26, 27, 56, 85, 102, 103
plot_poppr_msn(), 6
polysat::deSilvaFreq(), 99
poppr, 66, 90
poppr(), 6, 34, 36, 38, 54, 63
poppr-package, 3
poppr.all, 95
poppr.all(), 6, 48, 94
poppr.amova, 66, 81, 96
poppr.amova(), 6, 64
poppr.msn, 27, 56, 86, 88, 101
poppr.msn(), 7
poppr_has_parallel, 104
popsub, 56, 69, 105
popsub(), 5, 63
Pram, 106

Pram(), 7
prevosti.dist, 32
prevosti.dist (nei.dist), 80
prevosti.dist(), 5, 9, 10, 14
private_alleles, 107
private_alleles(), 6
provesti.dist, 32
provesti.dist (nei.dist), 80
psex, 51, 84, 109, 113, 114, 120, 122
psex(), 6, 16

quasieuclid(), 99

rare_allele_correction, 6, 84, 111, 113,
120

read.genalex, 17, 115
read.genalex(), 4, 45, 54, 91
recode_polyploids, 117
recode_polyploids(), 5, 116
regex(), 48
resample.ia (ia), 50
resample.ia(), 5, 52, 54
reynolds.dist (nei.dist), 80
reynolds.dist(), 5, 10
rogers.dist, 72
rogers.dist (nei.dist), 80
rogers.dist(), 5, 10
round, 41
rraf, 83, 84, 109–111, 113, 114, 119, 122
rraf(), 6
rrmlg, 84, 111, 114, 119, 120, 121
rrmlg(), 6

samp.ia, 123
samp.ia(), 6, 14, 54, 129
sessionInfo, 56
setPop, 43
shufflepop, 124
shufflepop(), 5, 51, 92
snpclone, 3, 4, 8, 12–14, 28, 39, 62, 68, 72,

73, 75–77, 86, 97, 98, 101, 105, 128,
129

snpclone (genclone-class), 43
snpclone(), 35
snpclone-class (genclone-class), 43
splitStrata, 17
stats::rmultinom(), 34
strata, 43, 64, 83, 109, 119
strata(), 92, 98, 100

INDEX 135

tab, 19, 66, 103
tab(), 92
test_replen, 23, 42, 126
test_replen(), 5
topo.colors, 25, 101

upgma, 18, 19, 103, 127

vegan::diversity(), 38, 63, 69
vegan::rarefy(), 92

win.ia, 128
win.ia(), 6, 14, 54

	poppr-package
	aboot
	Aeut
	as.snpclone
	bitwise.dist
	boot.ia
	bootgen2genind
	bruvo.boot
	bruvo.dist
	bruvo.msn
	clonecorrect
	cutoff_predictor
	diss.dist
	diversity_boot
	diversity_ci
	diversity_stats
	filter_stats
	fix_replen
	genclone-class
	genind2genalex
	genotype_curve
	getfile
	greycurve
	ia
	imsn
	incomp
	informloci
	info_table
	is.snpclone
	locus_table
	make_haplotypes
	missingno
	mlg
	mlg.filter
	mll
	mll.custom
	mll.reset
	monpop
	nei.dist
	old2new_genclone
	partial_clone
	pgen
	Pinf
	plot_poppr_msn
	poppr
	poppr.all
	poppr.amova
	poppr.msn
	poppr_has_parallel
	popsub
	Pram
	private_alleles
	psex
	rare_allele_correction
	read.genalex
	recode_polyploids
	rraf
	rrmlg
	samp.ia
	shufflepop
	test_replen
	upgma
	win.ia
	Index

